
D7.4 RESULTS OF TEST CAMPAIGN ON CASE
STUDIES

Fabrice Bouquet (INR), Frederic Dadeau (INR), Stephane Debricon(INR), Eliza-
beta Fourneret (INR), Pierre-Alain Masson (INR), Zoltan Micksei (BME), Berthold
Agreiter (UIB), Frank Innerhofer-Oberperfler (UIB), Bruno Legeard (SMA), Olivier
Albiez (SMA), Julien Botella (SMA), Olivier Bussenot (SMA), Eddie Jaffuel (SMA),
Christophe Grandpierre (SMA), Jean-Luc Hamot (SMA), Aurelien Masson (SMA),
Dooley Nsewolo (SMA), Elisa Chiarani (UNITN), Michela Angeli (UNITN), Fabio
Massacci (UNITN), Jan Jurjens and Sven Wenzel (OU/TUD)

Document Information

Document Number D7.4
Document Title Results of test campaign on case studies
Version 2.0
Status Final
Work Package WP 7
Deliverable Type Report
Contractual Date of Delivery M36
Actual Date of Delivery 26 01 2012
Responsible Unit SMA
Contributors SMA, INR, UIB, BME, TUD, UNITN
Keyword List Model-based testing, Software Evolution, Security

Properties
Dissemination level PU

D7.4 Results of test campaign on case studies | version 2.0 | page 1 / 53

Document change record

Version Date Status Author (Unit) Description
0.1 13.06.11 Draft F. Bouquet(INR) B. Legeard

(SMA)
Outline

0.2 31.10.11 Draft E. Fourneret (INR), P-A.
Masson (INR), F. Bouquet
(INR)

Update
EvoTest/SeTGaM

0.3 4.11.11 Draft F. Bouquet (INR), F. Dadeau
(INR)

WP7 Results

0.4 10.11.11 Draft B. Legeard (SMA), J. Botella
(SMA)

Evaluation criteria

0.5 17.11.11 Draft B. Agreiter (UIB), F.
Innerhofer-Oberperfler
(UIB)

Homes Case study

0.6 28.11.11 Draft J. Botella (SMA), B. Legeard
(SMA), O. Albiez (SMA), O.
Bussenot (SMA), C. Grand-
pierre (SMA), J-L. Hamot
(SMA), A. Masson (SMA)

update SBTG

0.7 5.12.11 Draft J. Botella (SMA), D. Nsewolo
(SMA), E. Jaffuel (SMA), J.
Bernet (GTO), E. Fourneret
(INR)

Pops case study

1.0 15.12.11 Draft J. Botella (SMA) Typo.
1.1 3.1.12 Draft B. Agreiter (UIB) Review
1.2 7.1.12 Draft Z. Micksei (BME Review
1.3 11.1.12 Draft J. Bernet (GTO) Review update
1.4 13.1.12 Draft B. Agreiter (UIB) Homes update
1.5 11.1.12 Draft E. Fourneret(INR) Details for SeTGaM
1.6 18.1.12 Draft J. Botella (SMA), E.

Fourneret(INR)
Review update

1.7 19.1.12 Draft M. Angeli (UNITN) 1st Quality check
1.8 25.1.12 Draft E. Fourneret (INR), F. Bou-

quet (INR), J. Botella (SMA)
Integration of 1st QC

1.9 26.1.12 Draft M. Angeli (UNITN) 2nd Quality check
2.0 31.1.12 Final E. Fourneret (INR), F. Bou-

quet (INR), J. Botella (SMA)
Integration of 2nd QC

D7.4 Results of test campaign on case studies | version 2.0 | page 2 / 53

TABLE OF CONTENTS

Document information 1

Document change record 2

Abbreviations and Glossary 8

1 Introduction 9

2 WP7 Results Summary in regards to Evaluation Criteria 10
2.1 Reminder of Evaluation Criteria . 10
2.2 WP7 Results . 11

2.2.1 Conceptual method . 11
2.2.2 Method with associated tools . 12
2.2.3 Experimentations . 13

2.3 Evaluation of Results with Respects to Criteria 13

3 Update on WP7 scientific and technical results 15
3.1 Schema-Based Test Generation (SBTG) for security testing 15

3.1.1 Overall Process . 15
3.1.2 Defining Security Test Objectives . 15
3.1.3 Behavioural Modelling . 16
3.1.4 Defining Schema . 19

3.2 Selective Test Generation Method (SeTGaM) 24
3.2.1 Overall process . 24
3.2.2 Evolution Aspects in Security Testing 25
3.2.3 SeTGaM without UML/OCL statechart diagram 29

3.3 Integration in EvoTest Plugin . 32

4 Results of test campaign on POPS Case study 35
4.1 GP 2.1.1 and GP 2.2 UICC Card Life Cycle 35

4.1.1 Functional models . 35
4.1.2 Global Platform Security Properties to schemas 37
4.1.3 POPS Case Study by the numbers . 39

4.2 GP 2.2 UICC Card Content Management . 39
4.2.1 Functional model . 39
4.2.2 GP Card Content Management Security Property to Schemas 40

4.3 Feedback on the evaluation . 41
4.3.1 Calendar and Evaluation purpose . 41
4.3.2 Feedback of the evaluation . 42

D7.4 Results of test campaign on case studies | version 2.0 | page 3 / 53

5 Results of test campaign on HOME Case study 43
5.1 Business Case . 43

5.1.1 Requirements . 44
5.1.2 Test Model . 45
5.1.3 System Model . 46

5.2 Change Requirements . 46
5.3 Evolution Process . 49

6 Conclusion / Discussion 51

D7.4 Results of test campaign on case studies | version 2.0 | page 4 / 53

LIST OF FIGURES

2.1 EvoTest plugin components . 12

3.1 Process of Model-Based Security Testing with Schemas 16
3.2 GlobalPlatform enumerations . 17
3.3 Classes, attributes and Associations . 18
3.4 Operation Definition . 18
3.5 Instances . 19
3.6 OCL guard and effect . 19
3.7 Syntax of the Schema Language: Rules . 20
3.8 Syntax of the Schema Language: Terminals 21
3.9 Test Purpose Editor . 21
3.10 Test Suite Definition . 22
3.11 Behavioural Objectives Filter . 22
3.12 Generated Test from a Schema in Smartesting SBTG prototype 23
3.13 SeTGaM overall process . 24
3.14 Test Suites Composition . 25
3.15 Test classification for testing security properties with respect to evolution . . . 26
3.16 Test Status definition w.r.t TCS comparison 27
3.17 Transformation of an operation into behaviours 29
3.18 Behavioural Data Dependence process . 30
3.19 Set of behaviours for GP . 31
3.20 EvoTest integrated interface . 33
3.21 TestLink Smart Publisher . 34

4.1 Statechart GP 2.1.1 . 36
4.2 Statechart GP 2.2 UICC . 37

5.1 Home General environment . 44
5.2 Home original requirements model . 44
5.3 Test to browse service store and retrieve descriptions of available services . 45
5.4 Test to purchase a service from a third party service provider 45
5.5 Home Services . 46
5.6 Requirements Home model after changes . 47
5.7 Test to purchase a service from a third party service provider and using a

non-repudiation protocol – only executed for service providers with a low trust
level . 47

5.8 Test Lifecycle: depending on what is changed in the model, a test can be
affected . 48

5.9 HOMES services with additional non-repudiation components 48

D7.4 Results of test campaign on case studies | version 2.0 | page 5 / 53

5.10 Evolution process which handles changes on the model 49

D7.4 Results of test campaign on case studies | version 2.0 | page 6 / 53

LIST OF TABLES

1 Abbreviations used in the document . 8
2 Glossary . 8

2.1 Evaluation criteria for change . 10
2.2 Evaluation criteria for security . 11

3.1 Variables definitions and uses for GP behaviours 31
3.2 Illustrative set of test for GP behaviours . 32

D7.4 Results of test campaign on case studies | version 2.0 | page 7 / 53

Abbreviations and Glossary

Abbreviations

Abbreviations References
API Application Programming Interface
FSM Finite State Machine
ISTQB International Software Testing Qualifications Board
MBT Model-Based Testing
REQ Requirement
SBTG Schema-Based Test Generator
SeTGaM Selective Test Generation Method
SUT System Under Test
TCS Test Case Specification
TTS Telling TestStories
RSA IBM Rational Software Architect

Table 1: Abbreviations used in the document

Glossary

Term Definition
Adapter Piece of code to concretize logical tests into physical tests

Deletion Test Suite Test suite gathering tests from previous versions of the software that are out-
dated or failed in the current version.

Evolution Test Suite Test suite targeting SUT evolutions
Logical Test See Test Case
Model Layer Link of model’s operations in Test cases

Model-Based Testing Process to generate tests from a behavioural model of the SUT
Status of Test Case New, obsolete (outdated, failed), adapted, reusable (re-executed, unimpacted)

Physical Test See Test Script
Requirements Collection of functional and security requirements

Regression Test Suite Test suite targeting non-modified part of the SUT
Schema See Test Schema

Stagnation Test Suite Test suite targeting removed part of the SUT
System Model Model of the SUT used for development

Test Case A finite sequence of test steps
Test Intention User’s view of testing needs

Test Model Dedicated model for capturing the expected SUT behaviour
Test Suite A finite set of test cases
Test Script Executable version of a test case

Test Schema A regular-based expression to drive automated test generation for testing se-
curity properties

Test Sequence See Test Case
Test Step Operation’s call or verdict computation

Test Strategy Formalization of test generation criteria
Test Objective High level test intention

Table 2: Glossary

D7.4 Results of test campaign on case studies | version 2.0 | page 8 / 53

1 Introduction

This document is the last work package 7 (WP7) deliverable of the SecureChange project.
The planned composition of the deliverable is exclusively on experimentation results. How-
ever, we have decided to add some complementary elements on research activities. There
are two types of added contributions:

1. The first one contains an overview of all obtained results from WP7. We analyse
these results with the criteria defined in deliverable D7.1. These criteria were used to
analyse the state of the art in regards of the project’s statement problem.

2. The second contribution in this deliverable presents the tool’s improvements w.r.t the
previous deliverable D7.3.

First, in this deliverable we discuss on the contributions. Next, we provide details on
obtained results of the SecureChange two case studies: POPS and HOME. The first case
study (POPS) is divided in two sub-scopes. Each one addresses a complementary aspect
of the evolution and the security of the GlobalPlatform specification. The first sub-scope
is the Card Life Cycle. The associated evolution is linked to the specification’s evolution.
It changes from version 2.1.1 to 2.2 UICC. From security point of view, we work on the
translation of security properties into test needs. The second sub-scope is Card Content
Management (CCM). It enabled us to focus on the translation of security properties into test
needs. The goal of this sub-scope is to express security properties different to those in Card
Life Cycle.

The second case study (HOME) addresses the evolution of the home gateway services.
The provider can update services but the associated security properties must be guaran-
teed. WP7 provides an application of a methodology on this case study.

This deliverable is composed as following. In Sec. 2, the results’ overview is presented.
Sec. 3 is the update of previous deliverable (D7.3). Sec. 4 gives obtained results on POPS
case study. Sec. 5 gives the results obtained on HOME case study. Finally, Sec. 6 provides
a conclusion and discussion on WP7 results.

D7.4 Results of test campaign on case studies | version 2.0 | page 9 / 53

2 WP7 Results Summary in regards to Eval-
uation Criteria

This chapter summarizes the evaluation of SecureChange WP7 results with respect to the
evaluation criteria that have been defined at the very beginning of the project and presented
in deliverable D7.1. In this section we first recall the evaluation criteria, then we summarize
the main WP7 results: on evolution management and on security testing and finally we
propose an evaluation of these results w.r.t. to those criteria.

2.1 Reminder of Evaluation Criteria

In the first SecureChange WP7 deliverable (D7.1), we have defined the evaluation criteria to
analyse existing model-based testing approaches with respect to the SecureChange project
objectives. These criteria are structured into two categories:

• Evaluation criteria w.r.t. the evolution management;

• Evaluation criteria w.r.t. the security testing.

Name Description Evaluation
Stability of test
repository

Ability to minimize the impact of
evolutions on the test repository in
term of creation / deletion of tests

scale 1..3 (1: complete
re-creation, 3: maxi-
mum tests re-use)

Traceability of
changes

Ability to trace an evolution from re-
quirements to test repository

scale 1..3 (1: no trace-
ability, 3: full traceabil-
ity)

Impact analysis Ability to inform the user on poten-
tial impacts of an evolution on the
test repository

scale 1..3 (1: no impact
analysis, 3: full impact
analysis)

Test suite qualifi-
cation based on
changes

Ability to create test suite based on
change type

qualification / no qualifi-
cation

Table 2.1: Evaluation criteria for change

Therefore, we have proposed six criteria specifically dedicated to evaluate MBT ap-
proaches. These are gathered into two groups:

• Change: criteria to evaluate how MBT methods deal with evolutions in the context of
long-life evolving systems, as presented in Table 2.1. There are four criteria associated
to Change in order to take into account evolution in the testing process.

D7.4 Results of test campaign on case studies | version 2.0 | page 10 / 53

• Security: criteria to evaluate how MBT methods deal with security properties in the
context of long-life evolving systems as presented in Table 2.2. There are two crite-
ria associated to Security in order to establish confidence in the generated specific
security tests.

These criteria reflect an industrial point of view, and have been defined with the industrial
SecureChange partners involved in WP7. They reflect the practicability and effectiveness
of an MBT approach dedicated to deal with continuous security testing of long-life evolving
systems.

Name Description Evaluation
Traceability of se-
curity properties

Ability to provide bi-directional
traceability between security prop-
erties and generated test cases
managed in the test repository

scale 1..3 (1: no trace-
ability, 3: full traceabil-
ity)

Completeness of
security testing

Ability to manage the test of func-
tional security properties and to find
security vulnerabilities (threats and
attacks)

both / functional se-
curity properties only
/ security vulnerabilities
only

Table 2.2: Evaluation criteria for security

After summarizing the main results of SecureChange WP7, we are using these criteria
as an "interpretive lens" to analyse these results, based on the experience acquired during
project case studies and experimentations.

2.2 WP7 Results

In the SecureChange project, WP7 has three types of results:

1. Conceptual method,

2. Methods with associated tools,

3. Experimentation.

2.2.1 Conceptual method

The conceptual method is composed by two elements. The first element is the integration of
the test aspect into the general process of the SecureChange project. The second element
is the methodology called Telling TestStories. This methodology can be used to test the
services/security requirements of a system.

The SecureChange project provides a process to manage security and change. These
two aspects are the key issues in the software engineering process for evolving systems.
In this process, WP7 provides a method based on two artefacts. The first artefact is the
test model. This model, based on the security model (provided by WP4), embeds a link
with requirements (extracted and manage by WP3). The security aspect is given in the
test model and can be completed by the test intention. The test intention is a translation
of security properties or risk elements (identified by WP5) into test needs. These links are
presented in the previous deliverable D7.3 and exposed in the article [9].

D7.4 Results of test campaign on case studies | version 2.0 | page 11 / 53

Telling Test Stories is a model-driven testing methodology developed in SecureChange
project. This methodology provides a framework to maintain evolving test models. The
methodology is based on a requirements model, a system model, and a test model. The
overall evolution process manages changes of models, selection and execution of tests.
The evolution process is initiated by adding, modifying or deleting model elements. State
machines attached to various model elements describe the current state of the artefact,
and allow a propagation of the change to other relevant model elements. This procedure
provides an overview over the state of each test at any time, and automatically assigns
test types when a change happens. Furthermore, it supports the creation of tailored test
suites for specific needs. In particular, the presented methodology allows an automatic
determination of tests affected by a change. This optimises the creation of test suites in two
different ways:

1. on one hand, test suites are kept minimal, e.g. by only including tests which were
affected by the last change in the model,

2. on the other hand, the test suites are kept up-to-date automatically by the test lifecycle,
and additionally test requirement specifications in OCL allow finer-grained determina-
tion of test suites.

This approach is applied on the HOME case study (see Section 5).

2.2.2 Method with associated tools

This section gathers a concise description of all tools developed during the SecureChange project
by two partners of WP7: INRIA and Smartesting. This development provides an Eclipse
plugin called EvoTest. The details of the integration and the application example are repre-
sented in Section 3.3. The architecture of the plugin EvoTest is depicted in Figure 2.1.

EvoTest(SeTGaM(

SBTG(

Smart(Publisher(

Test(Anima8on(Engine(

Test(Genera8on(Engine(

Figure 2.1: EvoTest plugin components

Below the three main components of the EvoTest plugin are detailed:

• Schema-Based Test Generation (SBTG), this component provides two features: a
scenario editor and a test generator dedicated to scenario. The last improvements of
the scenario language are presented in Section 3.1

• Selective Test Generation Method (SeTGaM), this component provides two fea-
tures. The first one is the computation of dependencies in the test model elements
and the scenario. This dependency allows to classify tests w.r.t. the evolution. This
approach helps to maintain history of test and to reduce the test computation time.
This method can take into account security aspects and UML/OCL models with or

D7.4 Results of test campaign on case studies | version 2.0 | page 12 / 53

without a statechart. The second feature is the test classification i.e. test life cycle
management in a repository (for instance TestLink). Last improvements are presented
in Section 3.2.

• Smart Publisher, this component manages the tests life cycle publication into the
repository w.r.t. the classification computed by SeTGaM.

The two first components use a dedicated evaluation module developed by Smartesting for
the SecureChange project. This evaluation module is the generation and evaluation engine
as depicted in Figure 2.1.

2.2.3 Experimentations

To validate the methods and the tools developed in WP7 during the SecureChange project,
an experimentation is made on two different case studies.

The first one, POPS, is proposed by Gemalto. On this case study, we use the EvoTest
approach. This case study is composed by two experimentations: one on the Card Life
Cycle and the second one on the Card Content Management. Obtained results are respec-
tively presented in Sections 4.1 and 4.2.

The second case study is proposed by Telefonica. We have applied the Telling TestSto-
ries approach. Its results are presented in Section 5.

2.3 Evaluation of Results with Respects to Criteria

In this section, we provide an auto-evaluation on WP7 results with respect to the evaluation
criteria that have already been presented.

Stability of the test repository This is a strong added value of the SeTGaM algorithm to
maximize the stability of the generated test repository. The basic idea, which is to start
the process from a previous tests generation, offers by construction this possibility.
Evaluation: 3 - Maximum test re-use;

Traceability of changes Firstly, the requirement information is associated to a set of tags
into the test model. In regards of the evolution, if the management of requirements is
correctly done, the information can be propagated into the model via this tag (remove
or add tags or the OCL code is modified). Then, the algorithms take into account these
tags and propagate the link between test sequences and tags. Next, it is published
into the test repository in order to provide a traceability matrix. The Evaluation grade
is 2 for the first part because it is not an automatic process and 3 - full traceability - for
the second part.

Impact analysis This information is done by test classification and four test suite (Evolution,
Regression, Stagnation, Deletion). Evaluation: 3 - full impact analysis.

Test suite qualification based on changes This information is done also by the test clas-
sification. Evaluation : qualification.

Traceability of security properties This criterion is well implemented by the SBTG proto-
type. From Security Properties, the Security Engineer defines Security Test Objec-
tives, and then formalizes them via Test Schemas in order to drive automated test
case generation. Through all this process, a bi-directional traceability is managed and
supported by the tool. Evaluation: 3 - Full traceability.

D7.4 Results of test campaign on case studies | version 2.0 | page 13 / 53

Completeness of security testing Security Testing of Information Systems is clearly a
challenge that required a large set of complementary techniques, such as active and
passive testing techniques. Therefore, the techniques developed in SecureChange
WP7 mainly focus on a sub part of the challenge: mainly focused on testing the con-
formance of security functions (such as access control) using black-box active testing
techniques. Evaluation: Functional security properties only.

The integration of SeTGaM and SBTG in the EvoTest prototype brings the mixed capa-
bilities of managing evolution and driving test generation from security properties.

These results are detailed in the following sections.

D7.4 Results of test campaign on case studies | version 2.0 | page 14 / 53

3 Update on WP7 scientific and technical re-
sults

3.1 Schema-Based Test Generation (SBTG) for security testing

Smartesting provides model-based testing (MBT) solutions for functional testing. In order to
address Security Testing, a prototype has been developed based on the Smartesting Test
generation engine using dedicated Test Schemas to capture Security Test Objectives.

3.1.1 Overall Process

Model-based security testing from schemas is an extension of model-based testing which
targets the conformance testing of security functions with respect to the specifications. Fig-
ure 3.1 illustrates this global process of model-based security testing.

This process is based on four main steps, as depicted in Figure 3.1

¬ Defining Security Test Objectives. (Security Engineer)
 Behavioural modelling. (Security Test Expert)
® Defining Schemas for Test Generation. (Security Test Expert)
¯ Automated test generation.

From the security property analysis, a Security Engineer defines the security test objec-
tives. These expose the test objectives for security testing, in a detailed but informal form,
and a possible way of testing them (how to test). These security test objectives define the
testing strategy and impact the modelling activities and the driving of automated security
test generation.

In the Modelling phase, there are two main activities that are delivered by the Security
Test Expert in an incremental way. Both, the Behavioural Modelling of the System Under
Test (SUT), and the Schemas definition are to be done.

Once the modelling activity is achieved, the Smartesting Schema-Based Test Generation
engine prototype generates the test sequences corresponding to the expressed schemas,
in regard of the behavioural model.

3.1.2 Defining Security Test Objectives

Security Test Objectives are defined by the Security Engineer from Security Properties con-
cerning the SUT. For example a GP Security Property is an informal statement as illustrated
in the following sentence:

For any execution, whenever the card is put in the TERMINATED state by means of a
APDU_setStatus issued by a privileged application, then it should not be possible to revert

D7.4 Results of test campaign on case studies | version 2.0 | page 15 / 53

Figure 3.1: Process of Model-Based Security Testing with Schemas

to another state.
Security Properties may be tested in several ways. It depends on the SUT’s character-

istics and the Security Engineer knowledge and experience in testing such Security Prop-
erties. This know-how leads to Security Test Objectives defined in an informal way as illus-
trated the following statement:

(i) select an application with the Card Terminate Privilege, (ii) set the status of the card
to TERMINATED, (iii) try all operations (to see if they behave as predicted by the model,
i.e. by returning a status word of error).

3.1.3 Behavioural Modelling

This section summarizes the main characteristics of the behavioural modelling as it is sup-
ported by the current SBTG prototype version.

The behavioural model focuses on security features. In fact, the behavioural model is
restricted on the features relevant to the security test objectives. The model formalizes the
relevant point of control and observation, and the expected behaviours of the SUT. The
security-oriented behavioural model is built on the basis of the SUT functional requirements
and the security test objectives.

The model is created using the IBM Rational Software Architect v8.x (RSA) tool. A RSA
project can contain a UML2 model, which is used by the Smartesting prototype to generate
tests. Next we detail the model elements that are used for the test generation with the
Smartesting prototype. We present the different modelling activities: data type definition,

D7.4 Results of test campaign on case studies | version 2.0 | page 16 / 53

class diagram design, initial state creation and statechart definition.

Data types

The Smartesting generation engine is able to manipulate the UML primitive types Boolean
and Integer. Other types can be represented by Enumerations. For the GlobalPlatform
use case, the generator should be able to access several applications by their identifiers,
application and card states, and a status word must be returned after each APDU call.
Figure 3.2 presents the Enumerations that represent those different types of data:

Figure 3.2: GlobalPlatform enumerations

More complex data to be manipulated are represented in a UML class diagram.

Class diagram

The class diagram contains classes of objects used for the test generation. For GlobalPlat-
form, the SUT is represented by a class (in our case named Card). The system must have
the knowledge about applications that are installed on it, logical channels that ensure com-
munications, and the secure sessions that can be established on logical channels. Each of
these kinds of objects are also represented by classes, that have attributes (i.e. "state" for
the card) to store the system state.

Associations represent the relations between the objects. For instance, on the Card
system may install several applications. Each object can potentially perform actions on the
system, which are represented by UML operations.

Operations

Each control point of the SUT is represented by an operation. Here the Card class contains
different operations that represent those control points (APDUs). Figure 3.4 is an example
of operation that represent the SetStatus APDU.

When there is a need to observe the result of a SUT stimulation, operation with an
"observation" stereotype can be created. Here after each SUT stimulation, the status word
returned by the card is checked.

Initial Model Instances

Classes and association instances then represent the initial state of the SUT, with initial
values given for each attribute.

D7.4 Results of test campaign on case studies | version 2.0 | page 17 / 53

Figure 3.3: Classes, attributes and Associations

APDU_setStatus(
IN_claSMLevel : ALL_SM_LEVELS,
IN_lcNumber : ALL_LOGICAL_CHANNELS,
IN_option : ALL_SET_STATUS_OPTIONS,
IN_state : ALL_STATES,
IN_appAid : ALL_AIDS

) : ALL_STATUS_WORDS

Figure 3.4: Operation Definition

Statechart

A statechart can be created to represent the dynamic part of the SUT. Here each state of
the statechart represents a state of the card. Transitions between the states represent the
card life cycle transitions. Internal transitions represent actions that can be done on each
state (Figure 4.2).

Each transition is triggered by one operation defined in the class diagram. To express
the conditions that must be respected to trigger a transition, a guard can be defined. For
each transition, an effect can be defined to represent the expected behaviour of the SUT.
Both are represented with Object Constraint Language (OCL) code as seen on Figure 3.6.
Here the card state transition from OPREADY state to INITIALIZED is concerned.

The OCL code effect may contain annotations that enable to tag each branch of the
code. Tags is a set of requirements (denoted by the keyword REQ) and functional test
objectives (denoted by the keyword AIM), covering the expected behaviour (see Figure 3.6).

D7.4 Results of test campaign on case studies | version 2.0 | page 18 / 53

Figure 3.5: Instances

Figure 3.6: OCL guard and effect

3.1.4 Defining Schema

Schema is a formal definition of the Security Test Objective. It allows to explain the objec-
tives with a dedicated Test Purpose Definition language. So, this formalization enables to
express a meta-scenario in terms of states and actions in regards of model elements. Each
schema is unfolded into several Test Case Specifications (TCS) that are used to generate

D7.4 Results of test campaign on case studies | version 2.0 | page 19 / 53

the test cases.

Test Purpose Definition language

The created Test Purpose Definition language is an evolution of the language explained
in deliverable D7.3 and in the paper [8]. In addition, in Figure 3.7 and Figure 3.8, we give
respectively the rules and terminals of the language.

test_purpose ::= (quantifier_list COMA)? seq EOF;
quantifier_list ::= quantifier (COMA quantifier)*;

quantifier ::= FOR_EACH BEHAVIOUR var FROM behaviour_choice
| FOR_EACH OPERATION var FROM op_choice
| FOR_EACH LITERAL var FROM literal_choice
| FOR_EACH INSTANCE var FROM instance_choice
| FOR_EACH INTEGER var FROM integer_choice
| FOR_EACH CALL var FROM call_choice;

op_choice ::= ANY_OPERATION
| ANY_OPERATION_BUT op_list
| op_list;

call_choice ::= call_list;
behaviour_choice ::= ANY_BEHAVIOUR_TO_COVER

| ANY_BEHAVIOUR_TO_COVER_BUT behaviour_list
| behaviour_list;

literal_choice ::= IDENTIFIER (OR IDENTIFIER)*;
instance_choice ::= instance (OR instance)*;

integer_choice ::= CURLY_OPEN INT (COMA INT)+ CURLY_CLOSE;
var ::= DOLLAR IDENTIFIER;

state ::= ocl_constraint ON_INSTANCE instance;
instance ::= IDENTIFIER;

ocl_constraint ::= STRING_LITERAL;
seq ::= bloc (THEN bloc)*;
bloc ::= USE control restriction? target?;

restriction ::= AT_LEAST_ONCE
| ANY_NUMBER_OF_TIMES
| INT TIMES
| var TIMES;

target ::= TO_REACH state
| TO_ACTIVATE behaviour
| TO_ACTIVATE var;

control ::= op_choice
| behaviour_choice
| var
| call_choice;

call_list ::= call (OR call)*;
op_list ::= operation (OR operation)*;

operation ::= IDENTIFIER;
call ::= instance ’.’ operation parameters;

parameters ::= PARENTHESIS_OPEN (parameter (COMA parameter)*)? PARENTHESIS_CLOSE;
parameter ::= FREE_VALUE

| IDENTIFIER
| var
| INT;

behaviour_list ::= behaviour (OR behaviour)*;
behaviour ::= BEHAVIOUR_WITH_TAGS tag_list

| BEHAVIOUR_WITHOUT_TAGS tag_list;
tag_list ::= CURLY_OPEN tag (COMA tag)* CURLY_CLOSE;

tag ::= REQ COLON IDENTIFIER
| AIM COLON IDENTIFIER;

Figure 3.7: Syntax of the Schema Language: Rules

A Smartesting Test Purpose language editor with syntax highlighting and completion
has been developed and integrated for IBM Rational Software Architect (RSA) environment
(Figure 3.9).

D7.4 Results of test campaign on case studies | version 2.0 | page 20 / 53

TIMES ::= ’times’ ;
FOR_EACH ::= ’for_each’ ;

BEHAVIOUR ::= ’behaviour’ ;
OPERATION ::= ’operation’ ;

INTEGER ::= ’integer’ ;
CALL ::= ’call’ ;

INSTANCE ::= ’instance’ ;
LITERAL ::= ’literal’ ;

FROM ::= ’from’ ;
THEN ::= ’then’ ;

USE ::= ’use’ ;
TO_REACH ::= ’to_reach’ ;

TO_ACTIVATE ::= ’to_activate’ ;
ON_INSTANCE ::= ’on_instance’ ;

ANY_OPERATION ::= ’any_operation’ ;
ANY_OPERATION_BUT ::= ’any_operation_but’ ;

OR ::= ’or’ ;
ANY_BEHAVIOUR_TO_COVER ::= ’any_behaviour_to_cover’ ;

ANY_BEHAVIOUR_TO_COVER_BUT ::= ’any_behaviour_to_cover_but’ ;
BEHAVIOUR_WITH_TAGS ::= ’behaviour_with_tags’ ;

BEHAVIOUR_WITHOUT_TAGS ::= ’behaviour_without_tags’ ;
AT_LEAST_ONCE ::= ’at_least_once’ ;

ANY_NUMBER_OF_TIMES ::= ’any_number_of_times’ ;
COMA ::= ’,’ ;

CURLY_OPEN ::= ’{’ ;
CURLY_CLOSE ::= ’}’ ;

PARENTHESIS_OPEN ::= ’(’ ;
PARENTHESIS_CLOSE ::= ’)’ ;

COLON ::= ’:’ ;
DOLLAR ::= ’$’ ;

REQ ::= ’REQ’ ;
AIM ::= ’AIM’ ;

FREE_VALUE ::= ’_’ ;
DOT ::= ’.’ ;

IDENTIFIER ::= ’identifier’ ;
EOF ::= <EOF> ;

Figure 3.8: Syntax of the Schema Language: Terminals

Figure 3.9: Test Purpose Editor

The Schemas are defined as part of dedicated test suites, that can be created to or-
ganize tests that will be produced by the Smartesting generation tool. The tests to be
generated depend on the test suite definition (initial state, ...).

D7.4 Results of test campaign on case studies | version 2.0 | page 21 / 53

Test Suite definition

The Smartesting plugin enables the creation of test suites to define several SUT initial states
as depicted in Figure 3.10. Here can also be defined Test Fixtures, that are the instances
that contain model operations usable by the generator to compute the tests (by default this
field is empty, allowing the generator to use any operation present in the model).

Figure 3.10: Test Suite Definition

For each test suite the behaviours to cover can be filtered (Figure 3.11). Tests are
generated to cover only the behaviours filtered by the text given in the field "Definition". The
filter keeps the behaviours that have the text in the Definition field contained either by the
behaviour name, or by a requirement covered by the behaviour.

Figure 3.11: Behavioural Objectives Filter

The test generation from test purposes depends on our generation strategy from test
schemas. It uses the behaviours defined in the test suite, and the initial state of the suite in
order to access the objects to be used for test computation.

D7.4 Results of test campaign on case studies | version 2.0 | page 22 / 53

Test generation strategy from Schema

Once the Schema is defined, several TCS are created using the SBTG component. Each
TCS is an instantiation of the Schema, with a combination of variables, possible values
defined in the FOR_EACH part of the Schema.

For instance, consider the following Schema for GP:
for_each operation $X

from nominal_APDU_installForInstallAndMakeSelectable
or nominal_APDU_installForLoad
or nominal_APDU_load,

use any_operation any_number_of_times
to_reach "self.state=ALL_STATES::CARD_LOCKED" on_instance instance_OPRE_Card then

use any_operation any_number_of_times
to_reach "self.state=ALL_STATES::SECURED" on_instance instance_OPRE_Card then

use $X
It expresses that we aim at generating tests for each operation that can be used in the

model, where an application with the CARD_TERMINATE privilege is selected, then the
status of the card is set to TERMINATED, then an operation is called, represented by the
selected one in $X.

The $X variable can be valuated with each operation of the model. The Schema pro-
duces as many TCS as the number (n) of possible values for $X. If an other variable is de-
fined in the FOR_EACH part of the Schema, with m possible valuations, the strategy aims
at creating a TCS for each possible combination of variable valuations. It would produce n
* m TCS. For each TSC zero or one test is computed by Smartesting SBTG prototype de-
pending on the TCS reachability. Figure 3.12 shows one of the tests produced from a TCS.
The implementation of the Smartesting SBTG prototype has required a deep adaptation of
the Smartesting test generation engine in order to manage efficiently TCS computed from
Schemas.

Figure 3.12: Generated Test from a Schema in Smartesting SBTG prototype

D7.4 Results of test campaign on case studies | version 2.0 | page 23 / 53

Figure 3.13: SeTGaM overall process

3.2 Selective Test Generation Method (SeTGaM)

In this section we give two extensions of SeTGaM. On one hand we present in details the
extension of SeTGaM for security properties. On the other hand we give an extension of
SeTGaM’s impact analysis. The impact analysis was initially based on dependency algo-
rithms for UML/OCL statecharts. Now, we have developed an impact analysis based on
behavioural dependency algorithms for UML class diagrams, with pre/post conditions in op-
erations written in OCL.

3.2.1 Overall process

On Figure 3.13 we summarize the overall process of SeTGaM. It starts by giving as input
two models (the original M and the evolved one M’) including or not the associated schemas
and a test suite issued from the original model and the considered schemas (if they exist),
generated by Smartesting CertifyIt Tool. We first compare the elements (requirements for
functional testing and Test Case Specifications (TCS) for security testing) from the original
model M and the evolved one M’ by classifying them into Unchanged, Deleted, New and
Modified, tag ¬. Then, in tag we put together on one hand the element’s comparison
and the evaluation of changes in dependency graphs on the other, to evaluate the impacted
tests. Considering this information we can classify them first in step ® as: Unimpacted,
Re-executed, Outdated, Failed, Adapted, Updated, New and Removed. The final result is
the produced test suite from model M’.

In addition, Figure 3.14 depicts how tests are gathered in the respective test suites. The
evolution test suite is composed of new and adapted tests. The regression test suite is
addressed by reusable tests, stagnation is addressed by outdated tests along with previous
versions of the adapted tests (the failed tests). Finally, the deletion test suite is composed
with tests issued from the stagnation test suite from the previous version.

Next we discuss how this process is extended for security properties testing and when
there is no existing statechart diagram.

D7.4 Results of test campaign on case studies | version 2.0 | page 24 / 53

Figure 3.14: Test Suites Composition

3.2.2 Evolution Aspects in Security Testing

We present here how to manage the impact analysis when testing security properties. On
one hand, in MBT we create test models to cover requirements originating from the system
specification. On the other hand, we have the security properties expressed in textual form,
used to design test schemas that capture the test intentions for each security property, with
a formal language (see Section 3.1).

Selective test generation method for security properties

In this subsection we present the selective test generation method, called SeTGaM4Ssecurity,
that guides the selection of tests produced before model evolution. As depicted at fig-
ure 3.13, it is based on a previous work done for selective test generation from UML/OCL
Statechart using impact analysis, only from functional point of view [7]. Here we extend this
work to test generation from security properties from UML/OCL Statecharts. In the previous
work, cited above, the test intention was defined by requirements expressed in the model
and identified as tags REQ/AIM. Here, we are focused on testing from security properties
and the test intention is defined by Test Case Specifications (TCSs), obtained by schema
unfolding, as discussed in Section 3.1. In the context of evolving systems and, thus, evolv-
ing security test cases, we associate to each test a status, that indicates its state in the life
cycle, as depicted at figure 3.15.

Definition 1 (Evolving Security Test Cases) An evolving security test case tcn is char-
acterized by a tuple 〈tc, {tcs}, status〉 in which n is the version of the model on which
the test case tc applies, tcs is the set of test case specifications to which it is associ-
ated and status is its associated status: status ∈ {new, adapted, updated, unimpacted,
reexecuted, failed, outdated, removed}

status(tcn) denotes the status associated to tcn.

The overall process of SeTGaM test classification (see Section3.2.2) with respect to the se-
curity properties and the models evolution starts by giving as input two models (the original
M and the evolved one M’) including the associated schemas and a test suite issued from
the original model and the considered schemas, generated by Smartesting CertifyIt Tool.
According to the process depicted on figure 3.16 we first compare the TCS from the original
model M and the evolved one M’ by classifying them into Unchanged, Deleted, New. Then,
we put together on one hand the TCS comparison and the evaluation of changes in depen-

D7.4 Results of test campaign on case studies | version 2.0 | page 25 / 53

Figure 3.15: Test classification for testing security properties with respect to evolution

dency graphs on the other, to evaluate the impacted tests. Considering this information we
can classify them and produce as result the test suite from model M’.

In addition, we detail at Figure 3.15 the test classification with respect to the security
properties and the models evolution. In step ¬ tests are classified among four categories:
removed, outdated, unimpacted and an intermediate category re-testable. Each test is-
sued from unchanged TCS is classified as outdated(if it covers deleted requirements),
unimpacted(if the covered requirements by the test still exist and they are not impacted)
or re-testable(if the requirement exist but they are impacted by the change). Each test
re-testable is animated on the new model version M’, tag . When the animated tests pro-
duces the same expected outputs, its status is set to re-executed. If the expected outputs
are changed, then the status updated is attributed to test. When it is impossible to animate
the step, then its status is set to failed. However, the test target (TCS) still exists in model
M’ and we need to generate another test to cover it, with the Smartesting test generation
tool. The resulting test is set to adapted. For all new TCS, we generate new tests using
the generation tool. During the test generation time overhead is expected, and thus with the
test classification and reuse, the time complexity of the generation is much better than a full
generation.

Evolution of schemas w.r.t TCS

At evolution process level, we consider three kinds of changes: (i) the test schema can
evolve, (ii) the requirement, and thus the model, can evolve and we use the same test
schemas for security testing or (iii) both can evolve. In testing from security properties
we consider that both can evolve. However, when a schema evolves, we are interested in
changes that happen in the set of produced TCS, as depicted on Figure 3.16, under ¬.
Thus, we consider three status of TCS: Unchanged, New, Deleted. Depending on the
evolution, from one single schema we may unfold different sets of TCS for different model
versions. TCS may remain unchanged or a new one can be added. In the unchanged
set of TCS is then used by SeTGaM for security properties’ for test classification, as already
depicted on Figure 3.15.For each new TCS, the test generator produces 0 or 1 test ¯. And

D7.4 Results of test campaign on case studies | version 2.0 | page 26 / 53

Figure 3.16: Test Status definition w.r.t TCS comparison

a deleted schema implies the removal of its associated TCS, and tests also, tag ®. It is
straight-forward to find a test from a TCS and vice-versa, since we ensure their traceability.

In the next subsection we give more details about the test classification and test suite
management based on security properties tests.

Evolution in Test Suites with respect to Security Testing

The composition of test suites that are considered for evolution management in security
testing is represented by four test suites: Evolution, Regression, Stagnation and Deletion
Test Suite (see Figure 3.14). They are denoted with ΓX , where Γ is the notation for a
test suite and X is its type. We give here their names and an informal description of their
purposes. The definitions and rules below are extension to the rules given in our previous
work in [7].

Evolution test suite ΓE contains tests produced from the new TCS, which represent the
novelties of the system, such as new requirements, new operations, new behaviours etc.,
related to the security properties we are testing.

Regression test suite ΓR contains tests produced from unchanged TCSs which exercise
the unmodified parts of the system. These tests aim at ensuring that the evolutions did
not impact parts of the SUT that were not supposed to be modified and that the security
properties are still preserved.

Stagnation test suite ΓS contains invalid tests produced from unchanged TCS w.r.t. the
current version of the system. They are expected to fail when executed on the SUT (either
because they cannot be executed, or because they detect a non-conformance of the SUT
w.r.t. the expected results).

D7.4 Results of test campaign on case studies | version 2.0 | page 27 / 53

Deletion test suite ΓD contains tests produced from deleted TCS, from deleted schemas
w.r.t the current version.

Composition of security test suites We give here rules used to attribute tests into the
previously defined test suites. We recall the notation, tcn is a test from the initial version of
the model and tcn+1 a test for the evolved version.

Rule 1 (New tests) A new test exists only at tcn+1 version. All new tests are added in the
Evolution Test Suite:

status(tcn+1) = new tcn+1 ∈ Γn+1
E

Rule 2 (Reusable tests) A reusable test (either unimpacted or re-executed) comes from
an existing test suite tcn ∈ Γn

E ∪ Γn
R and it is unchanged tcn+1 = tcn. All these reusable

tests are added in the Regression Test Suite: status(tcn+1) ∈ {unimpacted, reexecuted}
tcn+1 ∈ Γn+1

R

Rule 3 (Obsolete tests) An obsolete test comes from an existing test suite (possibly obso-
lete) tcn ∈ Γn

E ∪ Γn
R ∪ Γn

S . All tests that have been declared as obsolete are added in the
Stagnation Test Suite.

status(tcn+1) = {outdated, failed} tcn+1 ∈ Γn+1
S

Notice that the failed tests have also been recomputed to be used as adapted for the
same version.

Rule 4 (Updated tests) An updated test comes from an existing test suite tcn ∈ Γn
E ∪ Γn

R.
All tests which results have been updated are added in the Evolution Test Suite.

status(tcn+1) = updated tcn+1 ∈ Γn+1
E

Rule 5 (Adapted tests) An adapted test comes from an existing test suite tcn ∈ Γn
E ∪ Γn

R.
All tests that have been adapted are added in the Evolution Test Suite.

status(tcn+1) = adapted tcn+1 ∈ Γn+1
E

Notice that the previous versions (failed tests) are added in the Stagnation Test Suite. Since,
we consider a light merge, a test set as outdated may lead to decreasing the TCS coverage.
Thus, for each uncovered TCS by means of test classification of the previous model version,
an adapted test is generated.

Rule 6 (Removed tests) In the process of security properties evolution we consider that
when a schema is deleted, by traceability they are gathered into the Deletion Test Suite
and their life cycle is set to removed. We give here the extended definition:

status(tcn) = {removed} tcn ∈ Γn
D

D7.4 Results of test campaign on case studies | version 2.0 | page 28 / 53

3.2.3 SeTGaM without UML/OCL statechart diagram

Using statechart diagrams helps a lot to identify which requirements are really dependent
from another one and which ones are not dependent. Then, by using these dependency re-
lations it is possible to define the impacted requirements. This work is done in our previous
work in [6]. But some complex operations to test is often difficult due to several reasons,
even impossible, to represent by a statechart. First of all it is not obvious to define the initial
state or under which conditions is possible to change a state. Another possibility, there is not
possible to identify a cycle process in the system that can be represented by a statechart.
Another problem is that the number of states may explode and then the time to process all
the data is increasing infinitely long. In this case, it can happen to obtain too many depen-
dencies, which makes the SeTGaM application useless. A possible solution to this problem
would be to use model slicing to reduce the number of states. This will create additional
work that will slow down the process. Operations have pre and post condition expressed
in Object Constraint Language (OCL). In each operation, we express several requirements.
Each operation has represented by a behaviour and its associated tags. Thus, we have de-
cided to work on an approach for dependency analysis based only on class diagrams and
behaviours defined by OCL in the operations.

Next in this section we detail the extraction of model behaviours and then the calculation
of behavioural dependencies using dependence-consistence.

Model behaviours

An OCL operation is defined by a precondition and a post condition. Generally, an oper-
ation has different behaviours, depending of the context where the operation is called. A
behaviour is defined by a triple of precondition, post-condition and tags. We define formally
a model behaviour with the definition 2

Definition 2 (Model Behaviour) is extracted from an operation and is defined as a triple of
precondition, postcondition and tags, denoted B :(@PRE,@POST,ΣTAGS).

The behaviours can be identified by the presence of conditions (if, then, else) in the
post-condition of the operation. The actions described by the "then" of the condition corre-
sponds to one behaviour and the actions in the else, an another. Further, we depict in the
Figure 3.17 the transformation of an operation into behaviour.

Figure 3.17: Transformation of an operation into behaviours

The post-condition correspond to the actions executed by the behaviour. The precon-
dition is the union of the operation’s precondition and the conditions necessary to reach
the behaviour’s post-condition. If a post-condition of the behaviour is placed in the "else"
of a condition, the negation of the condition is stored as a precondition. The tags of the
behaviour refer to requirements covered by the behaviour’s post-condition.

D7.4 Results of test campaign on case studies | version 2.0 | page 29 / 53

In the OCL condition we accept unary logical operators such as not and binary logical
operators such as <, >, =, >=, <=, <>, and, xor, or. This latter in expression "A or B"
makes reference to three possible cases where the expression may be true. Thus, once the
behaviours are extracted form the operations, the next step is to remove the binary operator
"or" from the precondition. Indeed, the expression "A or B" constitutes three different cases
that are: "A and B", "not A and B" and "A and not B". So, each behaviour which has an "or"
operator in the precondition is divided in three behaviours having the same post-condition
and tags but different preconditions. Finally, expressions with not unary operator, such as
"not(A or B)" in the precondition are transformed in "not A and not B".

Impact analysis based on Behavioural Dependence

When discussing on dependences for class diagrams we do not consider control dependen-
cies, since each operation may be called after each operation. If the operation is called with
or without success it depends only on the conditions to be reached. Evaluate completely the
conditions is time consuming but for dependence graph construction our goal is to reduce
the processing time as much as possible. Thus, we suggest to constitute data dependence
graph based on model’s behaviours, extracted from an operation.

Figure 3.18: Behavioural Data Dependence process

Indeed, the graph based on definitions and uses of variables in behaviours represents
more real dependencies than a graph based on definitions and uses in an operation. More-
over, we suggest a technique to reduce false positive data dependencies between be-
haviours. We depict the behavioural dependence process in Figure 3.18. As shown at
this figure behaviour 2 depends from another behaviour 1 with respect to variable V1, de-
fined in behaviour 1 and used in behaviour 2 if the condition composed by the postcondition
action A and the precondition condition 2 is dependence-consistent. We give below the
formal definition of behavioural-dependence.

Definition 3 (Behavioural Data dependence) A behaviour B′ is data-dependent from an-
other behaviour B w.r.t. variable v if and only if v is defined in B and used in B′ and there
exists dependence-consistence w.r.t. v between B′ and B.

We give below the definition for dependence-consistence between behaviours.

Definition 4 (Dependence-consistence) A behaviour B′ is dependence-consistent w.r.t
behaviour B iff (B′.@PRE && B.@POST) is consistent.

To verify the consistence of the condition from UML/OCL models we use a SATisfiability
Modulo Theory (SMT) solver for first order logical formulas. A SMT solver can determine if
the formula is true or not. However, there are many SMT solvers compatible with SMT-LIB
format. In our case, we can use Z3 [3] and CVC3 [2] solvers. Indeed there is not really

D7.4 Results of test campaign on case studies | version 2.0 | page 30 / 53

difference in performance when using one or the other solver. According to the result’s of
the SMT solver’s competition SMT-COMP1 we have thus decided to use for SecureChange-
project only the Z3 SMT solver.

Example of the approach on GlobalPlatform

To illustrate this approach, we consider an extract of the GlobalPlatform(GP) Card Life Cycle
depicted on Figure 3.19. The extract of the OCL code corresponds to the green line on the
Card Life Cycle statemachine, taking the card’s state from OP_READY to INITIALIZED,
and then to SECURED or TERMINATED. These three steps are considered as different
behaviours, denoted from B1 to B3.

Figure 3.19: Set of behaviours for GP

Each behaviour is identified by the triple (@PRE,@POST,ΣTAGS) w.r.t Definition 2. Next
we define the definitions and uses of variables in the behaviours, represented in Table 3.1.
We compute data dependencies as triples composed by definition def and use use of vari-
able v noted (def, use, v). According to these results and the def/use pairs, we conclude
that all behaviours are mutually data dependent i.r variable state, thus we have 6 data
dependencies denoted by (Bi, Bj , state)i 6=j .

Behaviours Variables
state IN_STATE lastStatusWord cardTerminate

B1 def/use use def
B2 def/use use def
B3 def/use use def use

Table 3.1: Variables definitions and uses for GP behaviours

We consider the set of three tests t1, t2 and t3, covering the behaviours B1, B2 and B3.
The tests (decomposed in steps and the behaviours covered) are detailed in the Table 3.2.
Now, we consider an evolution (change) in the guard of the behaviour B3.

When applying the test selection process with these data i.e. six def/use pairs and the
change of B3, all tests are selected to be as Retestable w.r.t the defined test classification

1http://www.smtcomp.org

D7.4 Results of test campaign on case studies | version 2.0 | page 31 / 53

Tests Steps B1 B2 B3
t1 setStatus(INITIALIZED) x
t2 setStatus(INITIALIZED),setStatus(SECURED) x x

t3
setStatus(INITIALIZED)
setStatus(SECURED) x x x
setStatus(TERMINATED)

Table 3.2: Illustrative set of test for GP behaviours

(see the overall process above in Section 3.2.1).
In fact, not all of these tests should have been classified as Retestable. The def/use

pairs define a possible data dependence between behaviours. We propose to reduce the
number of possible data dependencies. For this, we have extended our approach and de-
fined the dependence-consistence. When applying Definition 4 (dependence-consistence),
we reduce the number of possible data dependencies to only two: (B1, B2, state) and
(B1, B3, state).

The behaviour B3 has changed, so the t3 is set as Retestable. The data dependencies,
w.r.t SeTGaM process, permitted to keep unchanged the tests t1 and t2 and their status is
set as Reusable. To conclude, the dependence-consistence introduced for SeTGaM allows
to reuse maximum of tests from a previous version and decide about their status.

3.3 Integration in EvoTest Plugin

In this section we present our work on software development level. We have created an
industrial prototype to experiment our research work and to face real problems of scalability.
The software, called EvoTest, is an Eclipse Plugin for IBM Rational Software Architect.

Figure 3.20 depicts a screenshot of the EvoTest Plugin. We have provided two main
parts for this tool. The first panel Test Purposes is dedicated to the schema edition. The
second panel SeTGaM tool on the page bottom is dedicated for the functional and security
test suite management when system’s evolution occurs.

The schema allows to produce TCS, in order to generate tests to cover a given security
property. We associate the created schema to the model’s test suite, called smartsuite.
Which is then used for test generation by Smartesting CertifyIt generator engine. More-
over, in the industry the number of security properties may be very high. Take for instance
the Global Platform project, there are many security properties. To respond to this scala-
bility problem is not optional, we need to deal with many schemas. Thus, as depicted on
the panel’s left side (Figure 3.20), we give the possibility to create an undefined number of
schemas and associate them to a test suite. On the panel’s right side, the schema editor is
available. It verifies in run time the schema’s syntax and it offers to the user an autocom-
pletion and coloring syntax feature. For internal use at the Smartesting company and at our
SecureChange’s industrial partners it has been shown that a validation engineer produces
schemas, and thus tests, with better quality, correctly written and quicker. In addition, the
engineers were satisfied using the autocompletion feature, since there was no additional
effort for learning the schema’s language syntax.

In the tool we address a second automated solution for managing tests dedicated to
security properties, with respect to changes on requirements level, as detailed in D7.3.
The panel dedicated to evolution is shown at Figure 3.20, allows the user to select two

D7.4 Results of test campaign on case studies | version 2.0 | page 32 / 53

Figure 3.20: EvoTest integrated interface

model versions a the security test suite. Then (s)he can run the classification process on
the already existing tests from the initial version and the generation of new and, if needed
adapted tests. The different test statuses can be seen on the piechart depicted at the
Figure 3.20.

The SeTGaM benefits are twofold. Firstly it ensures the test history; Secondly it eases
the maintenance process when executing them on the system by:

• helping the validation engineer to understand where the problem comes from. If the
system does not behave as expected, (s)he can easily locate the bug.

• running a large number of tests is time consuming. The user needs to prioritize the test
execution. The classification we propose permits her/him to prioritize the execution of
the tests. Our experience shows that the most important test suite for the user is the
Stagnation Test Suite, since it refers to requirements that should not exist any more.

According to the POPS case study’s first impressions feedback, we make it possible,
after test classification, to select the wanted test suite and observe the added tests. When

D7.4 Results of test campaign on case studies | version 2.0 | page 33 / 53

setting the cursor on a given test at the right panel a tool-tip text appears containing the test
steps, as shown at the Figure 3.20.

Once tests are classified and generated, if necessary, for the new version, the tool
permits to export tests and their statuses using the Smart Publisher, in a TestLink mysql
database, as depicted in Figure 3.21.

Figure 3.21: TestLink Smart Publisher

D7.4 Results of test campaign on case studies | version 2.0 | page 34 / 53

4 Results of test campaign on POPS Case
study

4.1 GP 2.1.1 and GP 2.2 UICC Card Life Cycle

GlobalPlatform (GP) is a set of smart card management services such as the loading of
applications. It provides an interface to communicate in a secure way with the external
world, in accordance with GP specifications [1]. In the GP documents life cycle models
are detailed in order to control the behaviour and the security of GP components: card,
executable load files, executable modules and applications. The scope of our work is the
management of the card life cycle, from the card’s production until its destruction. We
have created models for the two versions on the Card Life Cycle Scope of GlobalPlatform
2.1.1 and 2.2 UICC Configuration, the UICC Configuration is standardizing the minimum
interoperability for (U)SIM cards for supporting remote application management.

4.1.1 Functional models

In this section we present the odels for Gp Card Life Cycle scope 2.1.1 and 2.2, UICC
configuration.

GP 2.1.1 Card Life Cycle

The GP 2.1.1 Card Life Cycle model focuses on the APDU command SetStatus and its
behaviours that manage the Card State transitions. However, in order to generate tests
cases, the model must contain enough information to be able to create the necessary con-
texts to test each Card Life Cycle related behaviours. That is why "nominal" operations
have been created. Those operations only contain the subset of behaviours useful for the
activation of the dedicated Card Life Cycle behaviours. Some operations that represent a
sequence of operations have also been created in order to increase readability of the gener-
ated sequences. For example a "nominal_openSecureSession" represents the successful
sequence of the INITIALIZE_UPDATE and EXTERNAL_AUTHENTICATE APDUs permit-
ting to establish a secure channel session. Here is the list of operations represented in that
model:

• APDU_setStatus,

• nominal_APDU_installForInstallAndMakeSelectable,

• nominal_APDU_installForLoad,

• nominal_APDU_load,

• nominal_APDU_putKeyDesLight,

D7.4 Results of test campaign on case studies | version 2.0 | page 35 / 53

• APDU_manageChannel,

• APDU_select,

• nominal_openSecureSession,

• nominal_setUpCasdAndVasd.

Here are statistics about the model:

number of number of number of Card
operations usable behaviours Life Cycle behaviours

9 132 32

The Statechart representing the Card Life Cycle for the GP 2.1.1 specification is shown
on figure 4.1.

Figure 4.1: Statechart GP 2.1.1

D7.4 Results of test campaign on case studies | version 2.0 | page 36 / 53

GP 2.2 UICC Card Life Cycle

The scope is the same than the one for the GP 2.1.1 Card Life Cycle model. The same
operations are modelled.

The Statechart representing the Card Life Cycle for the GP 2.2 UICC specification is
shown on figure 4.2.

Figure 4.2: Statechart GP 2.2 UICC

Here are statistics about the model:

Nb of operations Nb of usable behaviours Nb Card Life Cycle behaviours
9 135 37

4.1.2 Global Platform Security Properties to schemas

In this section we are going to discuss about the security properties we have considered for
GP. Due to confidentiality we have chosen general security properties that are valid for all

D7.4 Results of test campaign on case studies | version 2.0 | page 37 / 53

credit cards, and not only for GP. We have worked on the subscope of GP, Card Life Cycle
and the APDU_setStatus operation allowing the card’s applications to change the card’s
status through OP_READY, INITIALIZED, SECURED, CARD_LOCKED and TERMINATED.
Each application has privileges for changing the card’s status. For instance in GP 2.1.1 only
the super application ISD can render the card unusable (state TERMINATED). While for the
new specification’s evolution GP 2.2UICC, an application having the terminate privilege can
terminate the card.

Security Property 1

The first security property for which we exhibit test schemas is expressed informally (i.e. in
the natural language) as: For any execution, whenever the card is put in the TERMINATED
state by means of a APDU_setStatus issued by a privileged application, then it should not
be possible to revert to another state.

Security Test Objective A scenario to test this security property can be described infor-
mally as: (i) select an application with the Card Terminate Privilege, (ii) set the status of
the card to TERMINATED, (iii) try all operations (to see if they behave as predicted by the
model, i.e. by returning a status word of error).

Test schema In order drive automatic generation, the Security Test Objective is formal-
ized as a Test Schema thanks to the Smartesting Test Purpose language as follow:
for_each operation $OPERATION from any_operation,

use any_operation at_least_once
to_reach "self.selectedApp.privileges.cardTerminate = true" on_instance card then

use APDU_setStatus
to_reach "self.state=ALL_STATES::TERMINATED" on_instance card then

use $OPERATION

Security Property 2

The second security property that we analyse is expressed informally as: It should not be
possible for an application that doesn’t have the Card Terminate privilege to switch the card
life cycle state to TERMINATED, via a APDU_setStatus command (if the application is an
SD).

Test Intention A scenario to test the nominal case of failure of this security property can
be described informally as: (i) try for all card states different from TERMINATED, (ii) se-
lect any application without the Card Terminate Privilege, (iii) set the status of the card to
TERMINATED.

Test Schema
for_each literal $STATE from OP_READY or INITIALIZED or SECURED or CARD_LOCKED,

use any_operation any_number_of_times
to_reach "self.selectedApp.privileges.cardTerminate = false

and self.state = ALL_STATES::$STATE" on_instance card then
use card.APDU_setStatus(_, _, CARD, TERMINATED, _)

D7.4 Results of test campaign on case studies | version 2.0 | page 38 / 53

4.1.3 POPS Case Study by the numbers

In this section we give results on the GP Card Life Cycle Scope. On one hand we give
numerical results for the evolution from functional point of view. On the other hand we detail
results w.r.t the tested security properties and the GP evolution.

Evolution in functional test suites for GP Card Life Cycle Scope

We have created models for the two versions on the Card Life Cycle Scope of GlobalPlat-
form 2.1.1 and 2.2 UICC Configuration. The GP UICC Configuration is a configuration of
v2.2, standardizing the minimum interoperability for (U)SIM cards for supporting remote ap-
plication management. For the first version we have identified 32 test targets. The second
version contains 37 test targets. With the comparison module of SeTGaM we have identified
four deleted, nine new, and twenty-eight unchanged requirements. For the first version we
have obtained twenty-seven tests. Next we have applied the SeTGaM process on the
evolved version, by classifying tests from the test suite of GP 2.1.1 model, which resulted
in: 4 obsolete tests, 15 unimpacted and 8 to be re-tested (i.e. 8 updated). Thus, we had to
generate tests only for 9 test targets, instead of 37. Using the generation engine we have
generated 9 new tests and obtained a total set of 32 tests.

Evolution in security test suites for GP Card Life Cycle Scope

For the first security property 9 tests were generated for GP 2.1.1, one for each operation.
Since in the schema we did not specify from which state the generator should attend the
state TERMINATED it took the first state OP_READY and sets the card to TERMINATED
and then calls each $OPERATION. The second security property produced 4 tests for GP
2.1.1, one for each given state. Contrary to the first schema, here we force the generator
to reach the state TERMINATED from each other state. When using the plugin EvoTest for
selective test generation for testing security properties on GP 2.2UICC, we have obtained
satisfying results on these two more general security properties. For the first one, all 9 tests
were unimpacted and there were not any new to produce. For the second security property,
the process resulted with 1 outdated, 3 unimpacted and 1 adapted test, since the outdated
test covers a deleted requirement, but the TCS associated to this test was still existent.

4.2 GP 2.2 UICC Card Content Management

4.2.1 Functional model

The GP 2.2 Card Content Management model focuses on the GlobalPlatform commands
behaviours that manage the loading, installation, configuration and deletion of applications
on the card. Only one version of the specification (GP 2.2 UICC Configuration) has been
modelled. It aims to see if the Test Purpose Language is expressive enough to cover the
property and produce interesting tests.

Here is the list of operations represented in that model:

D7.4 Results of test campaign on case studies | version 2.0 | page 39 / 53

• APDU_delete,

• APDU_installForExtradition,

• APDU_installForInstall,

• APDU_installForInstallAndMakeSelectable,

• APDU_installForLoad,

• APDU_installForMakeSelectable,

• APDU_installForPersonalization,

• APDU_installForRegistryUpdate,

• APDU_load,

• APDU_manageChannel,

• APDU_select,

• APDU_setStatus,

• nominal_openSecureSession,

• nominal_setUpCasdAndVasd,

• nominal_APDU_putKeyDesLight.

Here are statistics about the model:

Nb of operations Nb of usable behaviours Nb of Card Content Management behaviours
15 1076 944

4.2.2 GP Card Content Management Security Property to Schemas

The Card Content Management (CCM) model has been done to experiment the Schemas
possibilities to express Security Test Objectives issued from a Security Property. The Test
Purpose language must be expressive enough to represent the Security Test Objectives.
Next is an example of a Card Content Management Security Property, the related Security
Test Objectives, and the Schemas representing each one of them.

Security Property

The UICC configuration mandates that if a Security Domain application (SD) has authorized
management privilege, then it should be the only one amongst all SD that are indirectly
associated to it.

Security Test Objectives

Objective 1 whenever a SD ’A’ with authorized management is extradited to another SD
’B’ (using an INSTALL[for extradition] command), then neither ’B’ nor any SD on the path
from ’B’ to the root of its hierarchy (i.e. any SD to which ’B’ is associated via the transitive
closure of the SD association relation) can have authorized management. The test objective
is to extradite a SD using INSTALL[for extradition] command, to different SD hierarchies with
at least a SD with authorized management, and observe that the command is rejected.

Objective 2 whenever a SD ’A’ is given authorized management (using a INSTALL[for reg-
istry update] command), then no SD on the path from ’A’ to the root of its hierarchy can have
authorized management. The test objective consists to give the authorized management to
a SD using INSTALL[for registry update] command, this SD belonging to different SD hier-
archies with at least a SD with authorized management, and observe that the command is
rejected.

D7.4 Results of test campaign on case studies | version 2.0 | page 40 / 53

Objective 3 whenever a SD ’A’ is installed with authorized management (using a IN-
STALL[for install] command), then no SD on the path from ’A’ to the root of its hierarchy
can have authorized management. The test objective consists to install a SD with autho-
rized management using INSTALL[for install] command, under different SD hierarchies with
at least a SD with authorized management, and observe that the command is rejected.

Schemas

To simplify the readability of the following schemas please consider that HIERARCHY_1,
HIERARCHY_2, HIERARCHY_3 are the relevant hierarchies to test the concerned Security
Property, with SD_01 as the leaf SD of the hierarchy. The corresponding schemas to the
Test Objectives are:

Schema 1
for_each state $HIERARCHY from HIERARCHY_1 or HIERARCHY_2 or HIERARCHY_3,

use any_operation any_number_of_times
to_reach $HIERARCHY then

use APDU_installForInstall
to_reach "self.installedApps->exists(app : Application |

app.aid = SD_02 and app.privileges.securityDomain = true)"
on_instance instance_OPRE_card then

use card.APDU_installForExtradition(SD_02, SD_01)

Schema 2
for_each state $HIERARCHY from HIERARCHY_1 or HIERARCHY_2 or HIERARCHY_3,

use any_operation any_number_of_times to_reach $HIERARCHY then
use card.APDU_installForRegistryUpdate(SD_01, authorized_management)

Schema 3
for_each state $HIERARCHY from HIERARCHY_1 or HIERARCHY_2 or HIERARCHY_3,

use any_operation any_number_of_times to_reach $HIERARCHY then
use card.APDU_installForInstall(SD_02, SD_01, authorized_management)

4.3 Feedback on the evaluation

This section provides the Gemalto evaluation and feedback. The first sub-section presents
the calendar and elements which were validated. The second is the feedback of the final
evaluation step.

4.3.1 Calendar and Evaluation purpose

This information came from the Validation plan defined in Task 1.3 and associated deliver-
able.

The first version delivers to Gemalto is the version 1.2. It was provided in May 2011. The
evaluation purpose is:

D7.4 Results of test campaign on case studies | version 2.0 | page 41 / 53

• Evaluation of the usability, scalability and relevance of the test model,

• Installation of the tool and training on its usage,

• Preliminary report for this lite version.

The second version delivered to Gemalto is the version 1.3. This version takes into
account the first feedback and feature of the roadmap. It was provided in September 2011.
The evaluation purpose is:

• Installation of the additional EvoTest components,

• Final evaluation report on the tool and the methodology.

4.3.2 Feedback of the evaluation

This section corresponds to section 2.6.5 of the deliverable D1.3. This section is the conclu-
sion of the WP7 evaluation approach. All details of the evaluation are allowing in the section
2.6 of the deliverable D1.3.

Several experiences has been made using model-based testing for smart cards soft-
ware. Generally, the major drawback highlighted by the validation teams is the time spent
for modeling and the maintenance of the models in case of specification evolutions. Al-
though the organization of the generated test suites and the traceability are appreciable, the
validation engineer prefers modifying the tests suites that the model itself.

The SecureChange project confirms these results on the modeling effort but at the same
time demonstrates that, in case of change, it is easier to report a minor modification on the
models than investigating the test suites to identify the place for modification. This an impor-
tant feature for smart cards platforms. Generally, a smart card manufacturer develops and
maintains few platforms (called baselines), traditionally one per market sector. Then several
branches are developed corresponding to family of products. This means that the software
that constitutes the platforms, such as Globalplatform implementation, will be concerned by
specification evolutions or small modification for customization purpose. Therefore, the Se-
cureChange model-based technology will be helpfully to report the changes on the models
developed once that on the million of tests that are maintained in the tests benches. This is
why the effort must continue to improve the usability of the modeling and we advocate that
this technology must be planned and used early enough in the product life cycle.

Although expertise in UML / OCL seems to be an important requirement, it is rapidly
damped in time as with any programming language. Usually the R&D people are either
already familiar with these languages or have the scientific background needed to be quickly
trained.

One of the main advantage of this technology is its use in the context of Common Criteria
certification. Generally, if a product has been CC certified, any modification requires at least
a "delta" certification. This requires to the developer providing the evaluator with evidences
on the impact of the change and in particular, how he perform the testing on the modified
product. It is clear that the SeTGaM methodology and the tool will facilitate this step with
the categorization of the test suites and the corresponding reports.

D7.4 Results of test campaign on case studies | version 2.0 | page 42 / 53

5 Results of test campaign on HOME Case
study

This chapter discusses an application of the model-driven testing methodology developed
in SecureChange. The methodology is applied to the HOMES case study, where a home
gateway is in charge for enforcing various security requirements, and providing services to
its user. First, a system model and test model, together with a compact requirements model
for the case study are developed. Afterwards, we will check how our method behaves if the
system and its requirements evolve, and investigate the expected advantages concerning
the evolution steps. The underlying metamodel is explained in deliverable D7.3 and in [4] in
more details.

5.1 Business Case

The general environment is a home network wherein any connecting device shall be as-
sessed by the operator (see Figure 5.1). Once the device is accepted we may consider
the following interactions: the customer shall access an operator’s service store - which is
indeed a service installed in the customer’s home gateway - and select any service from
the catalogue. Services are offered by third party service providers (SP). Once the cus-
tomer selects a service, it is redirected to the proper service provider to proceed with the
purchase. The SP shall deliver the service to the customer’s home gateway. The delivered
service shall then be deployed as a web service client.

The operator requires a certain level of quality from the services offered by SPs. By
default, once the operator and the SP sign a commercial agreement, the operator trusts the
SP and its services. This trust is translated into a basic level of control over the SP and its
services, i.e., the operator does not impose strict constraints to the services. Nevertheless,
this trust might degrade over time. The operator shall degrade the trust on a certain SP
because of several reasons:

1. Reports on bad quality of the offered services: some SP may receive a noticeable
amount of complaints from customers about malfunctions or low quality of the service,
etc.

2. Critical bugs in services or even malware,

3. Non delivery of services.

In the following subsection we present the requirements model, the test model, and the
system model for our business case. We follow a test–driven modeling approach where the
test model initiates the modification of the system model.

D7.4 Results of test campaign on case studies | version 2.0 | page 43 / 53

0.1 Results HOMES Case Study

This chapter discusses an application of the model-driven testing methodology
developed in SecureChange. The methodology is applied to the HOMES case
study, where a home gateway is in charge for enforcing various security require-
ments, and providing services to its user. First, a system model and test model,
together with a compact requirements model for the case study are developed.
Afterwards, we will check how our method behaves if the system and its require-
ments evolve, and investigate the expected advantages concerning the evolution
steps. The underlying metamodel is explained in deliverable D7.3 and in [1] in
more detail.

0.1.1 Business Case

The general environment is a home network wherein any connecting device
shall be assessed by the operator (see Figure 1). Once the device is accepted we
may consider the following interactions: the customer shall access an operator’s
service store – which is indeed a service installed in the customer’s home gateway
– and select any service from the catalogue. Services are o↵ered by third party
service providers (SP). Once the customer selects a service, it is redirected to
the proper service provider to proceed with the purchase. The SP shall deliver
the service to the customer’s home gateway. The delivered service shall then be
deployed as a web service client.

Figure 1: General environment.

The operator requires a certain level of quality from the services o↵ered by
SPs. By default, once the operator and the SP sign a commercial agreement,
the operator trusts the SP and its services. This trust is translated into a basic
level of control over the SP and its services, i.e., the operator does not impose
strict constraints to the services. Nevertheless, this trust might degrade over
time. The operator shall degrade the trust on a certain SP because of several
reasons:

1

Figure 5.1: Home General environment

5.1.1 Requirements

The requirements model contains a hierarchy of functional requirements and security re-
quirements. Note that this model will be changed at a later point to demonstrate the evo-
lution functionality. Figure 5.2 presents the two base requirements that services can be
purchased (Req_1), and trust may be degraded by the operator (Req_2). Note that we here
use our own way of modeling requirements, however, this does not restrict the applicability
of the requirements model developed in workpackage 3. For presentational reasons we
chose to stick to our own representation.

• Reports on bad quality of the o↵ered services: some SP may receive a
noticeable amount of complaints from customers about malfunctions or
low quality of the service, etc.

• Critical bugs in services or even malware

• Non delivery of services

In the following subsection we present the requirements model, the test
model, and the system model for our business case.

Requirements Model

The requirements model contains a hierarchy of functional requirements and
security requirements. Note that this model will be changed at a later point
to demonstrate the evolution functionality. Figure 2 presents the two base
requirements that services can be purchased (Req 1), and trust may be degraded
by the operator (Req 2).

´«FunctionalRequirement´»

Req_2
{ Text = "Trust may be degraded by operator." }

´«SecurityRequirement´»

SReq_1.1
{ Text = "Only services authorised by operator
can be installed. (BLO−PE)"}

´«FunctionalRequirement´»

Req_1.1
{ Text = "Only authorised customers are
allowed to install third party
services."}

´«FunctionalRequirement´»

Req_1
{ Text = "Services can be purchased." }

Figure 2: Original requirements model.

Req 1 has two attached sub-requirements which means that the requirement
cannot be fulfilled if one of its sub-requirements is violated. The sub-requirement
Req 1.1 describes that only authorised customers should be allowed to install
third party services. The security requirement SReq 1.1 prescribes that only
services authorised by the operator should be allowed to be installed. Following
our methodology, SReq 1.1 is checked by executable assertions. In the following
section, we define the test model containing tests to check the requirements.

Test Model

The test model contains two tests for verifying the requirements stated before.
Note that only the requirements Req 1, Req 1.1 and SReq 1.1 are covered by
the tests, and Req 2 is omitted until now.

The first test is depicted in Figure 3. It checks the functionality to browse
the service store provided by the operator. It is expected that, on the one hand,
not all customers are allowed to purchase services at all, and on the other hand,
that only the services which are authorised by the operator can be installed.

2

Figure 5.2: Home original requirements model

Req_1 has two attached sub-requirements which means that the requirement cannot be
fulfilled if one of its sub-requirements is violated. The sub-requirement Req_1.1 describes
that only authorised customers should be allowed to install third party services. The security
requirement SReq_1.1 prescribes that only services authorised by the operator should be
allowed to be installed. Following our methodology, SReq_1.1 is checked by executable
assertions. In the following section, we define the test model containing tests to check the
requirements.

D7.4 Results of test campaign on case studies | version 2.0 | page 44 / 53

5.1.2 Test Model

The test model contains two tests for verifying the requirements stated before. Note that
only the requirements Req_1, Req_1.1 and SReq_1.1 are covered by the tests, and Req_2
is omitted until now. The first test is depicted in Figure 5.3. It checks the functionality to
browse the service store provided by the operator. It is expected that, on the one hand, not
all customers are allowed to purchase services at all, and on the other hand, that only the
services which are authorised by the operator can be installed.

 : Operator Service Store Server : Operator Service Store Client : Policy Enforcement Point : Policy Decision Point

[pass: allow = $allow
fail: not pass]

{requirements = SReq_1.1 }

assert

[pass: serviceDescriptions->contains(sd | sd=$serviceDescriptions)
fail: not pass]

{requirements = SReq_1.1 }

assert

serviceDescriptions5:

enforce(action=$getDescr, identificationData=$id)1:

decide(action=, identificationData=)2:

getServiceDescriptions()4:

serviceDescriptions6:

allow3:

Figure 3: Test to browse service store and retrieve descriptions of available
services.

In the test we have placed two assertions. The first assertion checks whether
the policy decision point correctly permits or denies access to the service store,
and the second assertion checks whether the correct service descriptions are
returned by the service store. Both assertions are assigned to SReq 1.1, and
the test itself is assigned to Req 1.1.

The second test checks whether purchasing a specific service works as ex-
pected. The client requests a specific service, but this action first has to be
permitted by the policy decision point. In case the installation is permitted, the
purchase request is forwarded to the service provider. Figure 4 depicts the test.

 : Operator Service Store Client : Third Party Service Provider : Policy Enforcement Point : Policy Decision Point

[pass: allow = $allow
fail: not pass]

{requirements = SReq_1.1 }

assert

enforce(action=$purchase, identificationData=$id)1:

service5:

decide(action=, identificationData=)2:

purchase(description=$description, service=)4:

service6:

allow3:

Figure 4: Test to purchase a service from a third party service provider.

The test contains one assertion which checks whether the decision point
permits the purchase as expected or not. This assertion is assigned to SReq 1.1.

Note that these two tests are not su�cient for an extensive quality assurance
of the presented system. We only present these two tests as an example here,

3

Figure 5.3: Test to browse service store and retrieve descriptions of available services

In the test, we have placed two assertions. The first assertion checks whether the pol-
icy decision point correctly permits or denies access to the service store, and the second
assertion checks whether the correct service descriptions are returned by the service store.
Both assertions are assigned to SReq_1.1, and the test itself is assigned to Req_1.1. The
second test checks whether purchasing a specific service works as expected. The client
requests a specific service, but this action first has to be permitted by the policy decision
point. In case the installation is permitted, the purchase request is forwarded to the service
provider. Figure 5.4 depicts the test.

 : Operator Service Store Server : Operator Service Store Client : Policy Enforcement Point : Policy Decision Point

[pass: allow = $allow
fail: not pass]

{requirements = SReq_1.1 }

assert

[pass: serviceDescriptions->contains(sd | sd=$serviceDescriptions)
fail: not pass]

{requirements = SReq_1.1 }

assert

serviceDescriptions5:

enforce(action=$getDescr, identificationData=$id)1:

decide(action=, identificationData=)2:

getServiceDescriptions()4:

serviceDescriptions6:

allow3:

Figure 3: Test to browse service store and retrieve descriptions of available
services.

In the test we have placed two assertions. The first assertion checks whether
the policy decision point correctly permits or denies access to the service store,
and the second assertion checks whether the correct service descriptions are
returned by the service store. Both assertions are assigned to SReq 1.1, and
the test itself is assigned to Req 1.1.

The second test checks whether purchasing a specific service works as ex-
pected. The client requests a specific service, but this action first has to be
permitted by the policy decision point. In case the installation is permitted, the
purchase request is forwarded to the service provider. Figure 4 depicts the test.

 : Operator Service Store Client : Third Party Service Provider : Policy Enforcement Point : Policy Decision Point

[pass: allow = $allow
fail: not pass]

{requirements = SReq_1.1 }

assert

enforce(action=$purchase, identificationData=$id)1:

service5:

decide(action=, identificationData=)2:

purchase(description=$description, service=)4:

service6:

allow3:

Figure 4: Test to purchase a service from a third party service provider.

The test contains one assertion which checks whether the decision point
permits the purchase as expected or not. This assertion is assigned to SReq 1.1.

Note that these two tests are not su�cient for an extensive quality assurance
of the presented system. We only present these two tests as an example here,

3

Figure 5.4: Test to purchase a service from a third party service provider

The test contains one assertion which checks whether the decision point permits the
purchase as expected or not. This assertion is assigned to SReq_1.1. Note that these two
tests are not sufficient for an extensive quality assurance of the presented system. We only
present these two tests as an example here, however one may consider multiple further
tests inspecting other aspects of the system. According to our metamodel (see D7.3 and
[5]), also tests itself can be assigned to requirements. The test for browsing the service

D7.4 Results of test campaign on case studies | version 2.0 | page 45 / 53

store is assigned to Req_1.1, and the test for purchasing services is assigned to Req_1. This
completes the relationships between tests and requirements. In the next section the system
model is discussed.

5.1.3 System Model

The system model defines services and the interfaces among them. The services and their
relationships are depicted in Figure 5.5. Most of the services were already used in the test
model.

however one may consider multiple further tests inspecting other aspects of the
system.

According to our metamodel (see D7.3 and [2]), also tests itself can be as-
signed to requirements. The test for browsing the service store is assigned to
Req 1.1, and the test for purchasing services is assigned to Req 1. This com-
pletes the relationships between tests and requirements. In the next section the
system model is discussed.

System Model

The system model defines services and the interfaces among them. The services
and their relationships are depicted in Figure 5. Most of the services were
already used in the test model.

´«component´»

Third Party Service
Provider

´«component´»

Operator Service
Store Server

´«component´»

Policy Decision
Point

´«component´»

Core Security
Modules

´«component´»

Policy Enforcement
 Point

´«component´»

OSGiInfrastructure

´«component´»

Operator Service
 Store Client Policy Enforcement

´«component´»

Home Gateway

Service Delivery

Policy Decision

Service Store

OSGi API

Figure 5: HOMES services.

The most relevant information are the interfaces because interfaces make
the interactions among services explicit. This information, in turn, is used for
propagating changes to the relevant model elements. Furthermore, since the
tests only use services and interfaces which are available in the system model,
an immediate consistency check is made while modelling tests.

0.1.2 Change Requirements

In this section we consider two di↵erent changes, and analyse how these changes
are handled by the methodology developed in SecureChange. The two change
scenarios we take into account are “Core security module update” and “Bundle
lifecycle operations”.

The core security modules are services contained within the Home Gateway
(cf. Figure 5). The function of core security modules is to facilitate basic security

4

Figure 5.5: Home Services

The most relevant information are the interfaces because interfaces make the interac-
tions among services explicit. This information, in turn, is used for propagating changes to
the relevant model elements. Furthermore, since the tests only use services and interfaces
which are available in the system model, an immediate consistency check is made while
modelling tests.

5.2 Change Requirements

In this section we consider two different changes, and analyse how these changes are han-
dled by the methodology developed in SecureChange. The two changed scenarios we take
into account are: "Core security module update" and "Bundle lifecycle operations". The
core security modules are services contained within the Home Gateway (cf. Figure 5.5).
The function of core security modules is to facilitate basic security functionality for the Home
Gateway itself, for instance the security assessment of connected devices. If the core secu-
rity modules are updated, for instance because a new device security assessment method
should be used (SReq_1.2 in Figure 5.6), this change propagates to all tests which depend
on the core security modules. This propagation is used to determine which tests are affected
by a change in order to determine exactly those tests which possibly need to be rerun. In the
case of adding SReq_1.2, there is no test which is directly affected by it. Nevertheless, this
does not mean that no action has to be taken. In fact, at least one test should be defined
which validates SReq_1.2 – we omit this step here. Concerning the change requirement
"bundle lifecycle operations", we introduce a further security requirement which enforces
the execution of a non-repudiation protocol for the service-purchase process (SReq_2.1).

D7.4 Results of test campaign on case studies | version 2.0 | page 46 / 53

The existing functional requirement, that "trust! in a service provider may be degraded by
the operator" depends on the new security requirement (see Figure 5.6).

functionality for the Home Gateway itself, for instance the security assessment
of connected devices. If the core security modules are updated, for instance
because a new device security assessment method should be used (SReq 1.2 in
Figure 6), this change propagates to all tests which depend on the core security
modules. This propagation is used to determine which tests are a↵ected by
a change in order to determine exactly those tests which possibly need to be
rerun. In the case of adding SReq 1.2, there is no test which is directly a↵ected
by it. Nevertheless, this does not mean that no action has to be taken. In fact,
at least one test should be defined which validates SReq 1.2 - we omit this step
here.

Concerning the change requirement “bundle lifecycle operations”, we in-
troduce a further security requirement which enforces the execution of a non-
repudiation protocol for the service-purchase process (SReq 2.1). The existing
functional requirement, that “trust in a service provider may be degraded by
the operator” depends on the new security requirement (see Figure 6).

´«FunctionalRequirement´»

Req_2
{ Text = "Trust may be degraded by operator." }

´«SecurityRequirement´»

SReq_1.1
{ Text = "Only services authorised by operator
can be installed. (BLO−PE)"}

´«SecurityRequirement´»

SReq_2.1
{ Text = "Purchases from third parties with
’low’ trust level need to execute
non−repudiation protocol. (BLO−PE)"}

´«SecurityRequirement´»

SReq_1.2
{ Text = "Only certified bundles should be
delivered by third parties. (CSM−PE)"}

´«FunctionalRequirement´»

Req_1.1
{ Text = "Only authorised customers are
allowed to install third party
services."}

´«FunctionalRequirement´»

Req_1
{ Text = "Services can be purchased." }

Figure 6: Requirements model after changes.

Until now, no test is defined which checks whether SReq 2.1 is fulfilled or
not. This means that we, first of all, create a new test which includes according
checks. In Figure 7, a test is displayed which performs a service purchase,
and checks the new requirement. The second assertion of that test checks the
recipient information which is sent to the trusted third party. This assertion
is associated to SReq 2.1. Furthermore, the test makes use of two additional
services which are not present in the system model so far.

 : Operator Service Store Client : Third Party Service Provider : Policy Enforcement Point : Non Repudiation Service : Policy Decision Point : NRP-TTP Service

[pass: ttpdata.recipient=$recipient
fail: not pass]

{requirements = SReq_2.1 }

assert

[pass: allow = $allow
fail: not pass]

{requirements = SReq_1.1 }

assert

enforce(action=$purchase, identificationData=$id)1:

communicate(data=)6:

submitData(ttpdata=)7:

decide(action=, identificationData=)2:

communicate(data=)4:

service9:

purchase(description=, service=)5:

service8:

allow3:

Figure 7: Test to purchase a service from a third party service provider and
using a non-repudiation protocol.

5

Figure 5.6: Requirements Home model after changes

Until now, no test is defined which checks whether SReq_2.1 is fulfilled or not. This
means that we, first of all, create a new test which includes according checks. In Figure 5.7,
a test is displayed which performs a service purchase, and checks the new requirement. The
second assertion of that test checks the recipient information which is sent to the trusted
third party. This assertion is associated to SReq_2.1. Furthermore, the test makes use of
two additional services which are not present in the system model so far.

functionality for the Home Gateway itself, for instance the security assessment
of connected devices. If the core security modules are updated, for instance
because a new device security assessment method should be used (SReq 1.2 in
Figure 6), this change propagates to all tests which depend on the core security
modules. This propagation is used to determine which tests are a↵ected by
a change in order to determine exactly those tests which possibly need to be
rerun. In the case of adding SReq 1.2, there is no test which is directly a↵ected
by it. Nevertheless, this does not mean that no action has to be taken. In fact,
at least one test should be defined which validates SReq 1.2 - we omit this step
here.

Concerning the change requirement “bundle lifecycle operations”, we in-
troduce a further security requirement which enforces the execution of a non-
repudiation protocol for the service-purchase process (SReq 2.1). The existing
functional requirement, that “trust in a service provider may be degraded by
the operator” depends on the new security requirement (see Figure 6).

´«FunctionalRequirement´»

Req_2
{ Text = "Trust may be degraded by operator." }

´«SecurityRequirement´»

SReq_1.1
{ Text = "Only services authorised by operator
can be installed. (BLO−PE)"}

´«SecurityRequirement´»

SReq_2.1
{ Text = "Purchases from third parties with
’low’ trust level need to execute
non−repudiation protocol. (BLO−PE)"}

´«SecurityRequirement´»

SReq_1.2
{ Text = "Only certified bundles should be
delivered by third parties. (CSM−PE)"}

´«FunctionalRequirement´»

Req_1.1
{ Text = "Only authorised customers are
allowed to install third party
services."}

´«FunctionalRequirement´»

Req_1
{ Text = "Services can be purchased." }

Figure 6: Requirements model after changes.

Until now, no test is defined which checks whether SReq 2.1 is fulfilled or
not. This means that we, first of all, create a new test which includes according
checks. In Figure 7, a test is displayed which performs a service purchase,
and checks the new requirement. The second assertion of that test checks the
recipient information which is sent to the trusted third party. This assertion
is associated to SReq 2.1. Furthermore, the test makes use of two additional
services which are not present in the system model so far.

 : Operator Service Store Client : Third Party Service Provider : Policy Enforcement Point : Non Repudiation Service : Policy Decision Point : NRP-TTP Service

[pass: ttpdata.recipient=$recipient
fail: not pass]

{requirements = SReq_2.1 }

assert

[pass: allow = $allow
fail: not pass]

{requirements = SReq_1.1 }

assert

enforce(action=$purchase, identificationData=$id)1:

communicate(data=)6:

submitData(ttpdata=)7:

decide(action=, identificationData=)2:

communicate(data=)4:

service9:

purchase(description=, service=)5:

service8:

allow3:

Figure 7: Test to purchase a service from a third party service provider and
using a non-repudiation protocol.

5

Figure 5.7: Test to purchase a service from a third party service provider and using a non-repudiation protocol
– only executed for service providers with a low trust level

Each test can be in one of three possible states described by a state machine (cf. Fig-
ure 5.8). This state machine regulates how tests are organised into different test suites
by assigning every test a specific type when anywhere in the model an element is added,
modified or deleted. The test just added is currently in state notExecutable. The next step
is to add the missing services to the system model (Figure 5.9). As soon as the services
are deployed, the test transitions to state executable (triggered by modifyService()). Now,
that SReq_2.1 is in state underTest, also Req_2 can be considered being under test. Fur-
thermore, also for services and requirements a state machine can be defined describing its
lifecycle, and receiving and emitting events upon changes. However, in the present descrip-
tion we only focus on the lifecycle of tests. As described in [4, 5] , and deliverable 7.3, the
test lifecycle keeps track of changes on various model elements. A specifically important
feature is the Type of a test. As described in previous deliverables, this type can be either
evolution, regression, stagnation or obsolete. The Type helps to determine which tests were
affected by a change, plus need to be rerun, and which tests can be disregarded. Consider-
ing the above mentioned example of the new purchase test, it transitions to state executable
as soon as the service is deployed (triggered by modifyService()). This transition has
the effect to set the Type of the test to evolution, which means that it was affected by the
last change. The already existing test to browse the service store instead, was already in

D7.4 Results of test campaign on case studies | version 2.0 | page 47 / 53

executable

notExecutable

new

modifyService(Service: srv)
 [not self.calls.service->forAll(state='executable') and

assigned(srv, self)] /
Type = stagnation

modifyTest()
modifyService(Service: srv)

 [self.calls.service->forAll(state='executable' and
assigned(srv, self)] /

Type = evolution

modifyRequirement(Requirement: req)
 [assigned(req, self) and
compatible(req, self)] /

Type = regression

modifyService(Service: srv)
 [assigned(srv, self) and

self.calls.service->forAll(state='executable')] /
Type = evolution

modifyService(Service: srv)
 [not assigned(srv, self) and

self.calls.service->forAll(state='executable')] /
Type = regression

modifyRequirement(Requirement:req)
 [assigned(req, self) and

not compatible(req, self)] /
Type = stagnation

assignTest(Requirement: req, Test: test)
 [test = self]

modifyTest()
modifyService(Service: srv)

 [not self.calls.service->forAll(state='executable')]

addTest()

Figure 8: Test Lifecycle: depending on what is changed in the model, a test can
be a↵ected.

Each test can be in one of three possible states described by a state machine
(cf. Figure 8). This state machine regulates how tests are organised into dif-
ferent test suites by assigning every test a specific type when anywhere in the
model an element is added, modified or deleted. The test just added is currently
in state notExecutable.

The next step is to add the missing services to the system model (Figure 9).
As soon as the services are deployed, the test transitions to state executable
(triggered by modifyService()). Now, that SReq 2.1 is in state underTest,
also Req 2 can be considered being under test. Furthermore, also for services
and requirements a state machine can be defined describing its lifecycle, and
receiving and emitting events upon changes. However, in the present description
we only focus on the lifecycle of tests.

As described in [1], [2], and deliverable 7.3, the test lifecycle keeps track
of changes on various model elements. A specifically important feature is the
Type of a test. As described in previous deliverables, this type can be either
evolution, regression, stagnation or obsolete. The Type helps to determine which
tests were a↵ected by a change, plus need to be rerun, and which tests can be
disregarded.

Considering the above mentioned example of the new purchase test, it tran-
sitions to state executable as soon as the service is deployed (triggered by
modifyService()). This transition has the e↵ect to set the Type of the test to
evolution, which means that it was a↵ected by the last change. The already ex-
isting test to browse the service store instead, was already in state executable
before. However, the test has no relation to the two new services. This means

6

Figure 5.8: Test Lifecycle: depending on what is changed in the model, a test can be affected

state executable before. However, the test has no relation to the two new services. This
means that the transition modifyService() will be triggered for the test when the services
are deployed. But, since it is not assigned to one of the two services its Type will be set to
regression.

Non Repudiation Protocol

Non Repudiation Protocol

«component»

Third Party Service Provider

«component»

Operator Service Store
Server

«component»

Non Repudiation Service

«component»

Policy Decision Point

«component»

Policy Enforcement
Point

«component»

Core Security Modules

«component»

OSGiInfrastructure

«component»

Operator Service
Store Client Policy Enforcement

«component»

Home Gateway

«component»

NRP-TTP Service

Service Delivery

Policy Decision

Service Store

OSGi API

NRP-TTP

Figure 9: HOMES services with additional non-repudiation components.

that the transition modifyService() will be triggered for the test when the ser-
vices are deployed. But, since it is not assigned to one of the two services its
Type will be set to regression. This is described by the transition modifySe-
vice(Service: srv) and its guard which is as follows:

[not assigned(srv, self) and

self.calls.service->forAll(state=’executable’)]

This way, all changes on requirements or services can be reflected accordingly
at the tests.

0.1.3 Evolution Process

The evolution process regulates how changes are propagated, and how test suites
are finally created. The process is always initiated by a change of a model ele-
ment. Changes can be either the creation of a model element (add–operations),
the deletion of a model element (remove–operations), or the modification of a
model element (modify–operations). Figure 10 depicts the process.

A change triggers an event involving state transitions in state machines which
may generate new events. This may cause state changes of a↵ected model ele-
ments, e.g., based on a service modification an assigned test state could tran-
sition from executable to notExecutable. This induces further changes to
obtain consistent and executable models. After the model is changed, the con-
sistency and executability of the new model need to be checked. This may
imply new modifications in case the check does not evaluate to true. The pro-
cess of changing tests, or any other part of the model is repeated until the model
is consistent, i.e., it contains no internal contradictions, and can therefore be
transformed to executable test code.

7

Figure 5.9: HOMES services with additional non-repudiation components

This is described by the transition modifyService(Service: srv) and its guard which is as
follows:

[not assigned(srv, self) and
self.calls.service->forAll(state=’executable’)]

This way, all changes on requirements or services can be reflected accordingly at the tests.

D7.4 Results of test campaign on case studies | version 2.0 | page 48 / 53

5.3 Evolution Process

The evolution process regulates how changes are propagated, and how test suites are
finally created. The process is always initiated by a change of a model element. Changes
can be either the creation of a model element (add-operations), the deletion of a model
element (remove-operations), or the modification of a model element (modify-operations).
Figure 5.10 depicts the process. A change triggers an event involving state transitions in
state machines which may generate new events. This may cause state changes of affected
model elements, e.g., based on a service modification an assigned test state could transition
from executable to notExecutable. This induces further changes to obtain consistent and
executable models. After the model is changed, the consistency and executability of
the new model need to be checked. This may imply new modifications in case the check
does not evaluate to true. The process of changing tests, or any other part of the model
is repeated until the model is consistent, i.e., it contains no internal contradictions, and can
therefore be transformed to executable test code.

Check Test Model
Executability and

Consistency

Change Affected Model
Elements and Propagate

Change

Change Model Element
and Propagate Change

Select Tests Test Requirement

Execute Tests Test Run

Model not executable or not consistent
Model executable and consistent

Figure 10: Evolution process which handles changes on the model.

The executability and consistency can be checked by OCL. The following
OCL query checks whether the parameters in calls are compatible with the
parameters of the referred operations.

context Model:

Call::allInstances.parameters->

forAll{ param | param.data.class

= self.operation.class }

Afterwards, tests are selected, i.e., a concrete test suite is computed from
the set of all tests, based on test requirements. Test requirements define test
selection criteria in OCL and typically consider the type of a test and the state
of other model artifacts. A very general regression test selects all tests that are
supposed to pass, i.e., tests of type evolution or regression and is as follows:

context Model:

Test::allInstances->select{ t |

t.type=’evolution’ or t.type=’regression’}

This way, specific test suites can be created and kept up–to–date automati-
cally. The methodology informs the test engineer which tests were a↵ected by
the last change (evolution), which were una↵ected by the last change (regres-
sion), and which tests should explicitly fail, e.g. because a service or require-

8

Figure 5.10: Evolution process which handles changes on the model

The executability and consistency can be checked by OCL. The following OCL query
checks whether the parameters in calls are compatible with the parameters of the referred
operations.

context Model:
Call::allInstances.parameters->

forAll{ param | param.data.class
= self.operation.class }

Afterwards, tests are selected, i.e., a concrete test suite is computed from the set of all
tests, based on test requirements. Test requirements define test selection criteria in OCL
and typically consider the type of a test and the state of other model artifacts. A very general
regression test selects all tests that are supposed to pass, i.e., tests of type evolution or
regression and is as follows:

D7.4 Results of test campaign on case studies | version 2.0 | page 49 / 53

context Model:
Test::allInstances->select{ t |

t.type=’evolution’ or t.type=’regression’}

This way, specific test suites can be created and kept up-to-date automatically. The
methodology informs the test engineer which tests were affected by the last change (evo-
lution), which were unaffected by the last change (regression), and which tests should ex-
plicitly fail, e.g. because a service or requirement is not supported any more (stagnation).
Additionally, all deleted tests are assigned a specific type and form the obsolete suite.

D7.4 Results of test campaign on case studies | version 2.0 | page 50 / 53

6 Conclusion / Discussion

In this deliverable, we have given the final status of the tool’s development and methodology
done in WP7. These results address a model-based testing approach for evolution in the
context of security engineering for lifelong evolving systems. The novelty of the results can
be categorized into two levels:

• management of evolutions in the model-based testing process with SeTGaM;

• capability to drive automated test generation from the model in order to ensure Secu-
rity Test Objectives with SBTG.

These results have been fully supported by a research prototype (EvoTest). This demon-
strator is based on Smartesting MBT technologies and integrates the WP7 results. It takes
into account change analysis, test generation based on evolution, test generation for secu-
rity properties, classification and publication of theses tests in a test repository depending
of the associated test status. EvoTest has been experimented on the POPS case study on
a real-size smart card application (GlobalPlatform GP2.2 UICC) with encouraging results.

Moreover, a semi-automatic approach, named TTS has been defined, providing model-
driven testing methodology.

These results of WP7 are integrated in a global SecureChange methodology and tool
chain, starting from requirements and formal definition of security needs, including model-
based testing and verification of the system under test. The re-usability of security model
and change analysis is clearly defined and provides a global work-flow for the SecureChange
process.

Finally, SecureChange WP7 work leads to several perspectives :

Regarding the exploitation of the work The results obtained for managing evolution in a
model-based testing process (SeTGaM) and to drive test generation from security test
objectives (SBTG) brings added value to the model-based testing solution. Smartest-
ing intends to industrialize these results in near future in order to integrate them into
the Smartesting CertifyIt product. The schedule and road-map are still not defined.
However SBTG integration into Smartesting CertifyIt will certainly be planed for the
next 12 months after the end of the SecureChange project.

Regarding scientific perspectives The results obtained in SecureChange WP7 lead to
interesting perspectives:

1. At evolution management level in the MBT process based on models analyze
and tests classification. This analyze is extension of existing works on data and
control dependencies. The tests classification is based on regression testing
works, which are refined in order to have more precise results.

D7.4 Results of test campaign on case studies | version 2.0 | page 51 / 53

2. At model-based security testing level, the current approach (SBTG) addresses
clearly a restricted part of the problem, focussing mainly on the conformance
testing of security functions. An important extension would be to address vulner-
ability testing based on test pattern and dedicated test generation models. This
will be a new research project.

To summarize, SecureChange project, with all its work packages, allowed model-based
testing techniques and challenge to strongly cooperate with security and change modelling
issues, as well as requirements management issues. For WP7 partners, and considering
the results obtain around SeTGaM, SBTG and TTS method, this project is a success and
pave the way to better address market needs in the context of security engineering for
lifelong evolving systems.

D7.4 Results of test campaign on case studies | version 2.0 | page 52 / 53

Bibliography

[1] Global platform specification. http://www.globalplatform.org/specificationscard.asp, May
2011.

[2] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns, editors,
Proceedings of the 19th International Conference on Computer Aided Verification (CAV
’07), volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, July 2007.

[3] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 4963/2008 of Lecture Notes
in Computer Science, chapter 24, pages 337–340. Springer Berlin, Berlin, Heidelberg,
April 2008.

[4] Michael Felderer, Berthold Agreiter, and Ruth Breu. Evolution of security requirements
tests for service-centric systems. In ESSoS 2011, pages 181–194, 2011.

[5] Michael Felderer, Berthold Agreiter, and Ruth Breu. Managing evolution of service cen-
tric systems by test models. In IASTED International Conference on Software Engineer-
ing 2011, 2011.

[6] Elizabeta Fourneret and Fabrice Bouquet. Impact Analysis for UML/OCL Statechart
diagrams based on Dependence Algorithms for Evolving Critical Software. In 10th Inter-
national Conference ETAI 2011, Ohrid, Macedonia, 2011.

[7] Elizabeta Fourneret, Fabrice Bouquet, Frédéric Dadeau, and Stéphane Debricon. Se-
lective Test Generation Method for Evolving Critical Systems. In Per Runeson and Shin
Yoo, editors, 1st International Workshop on Regression Testing, pages 125 – 134, Berlin,
Germany, July 2011.

[8] Elizabeta Fourneret, Martin Ochoa, Fabrice Bouquet, Julien Botella, Jan Jürjens, and
Parvaneh Yousefi. Model-based security verification and testing for smart-cards. In
ARES 2011, 6th Int. Conf. on Availability, Reliability and Security, Vienna, Austria, Au-
gust 2011.

[9] Fabio Massacci, Fabrice Bouquet, Elizabeta Fourneret, Jan Jurjens, Mass Lund,
Sébastien Madelénat, JanTobias Muehlberg, Federica Paci, Stéphane Paul, Frank
Piessens, Bjornar Solhaug, and Sven Wenzel. Orchestrating Security and System En-
gineering for Evolving Systems. In Witold Abramowicz, Ignacio M. Llorente, Mike Sur-
ridge, Andrea Zisman, and Julien Vayssière, editors, 4th European Conference, Towards
a Service-Based Internet - ServiceWave 2011, volume 6994 of Lecture Notes in Com-
puter Science, pages 134–143, Poznan, Poland, 2011.

D7.4 Results of test campaign on case studies | version 2.0 | page 53 / 53

	Document information
	Document change record
	Abbreviations and Glossary
	Introduction
	WP7 Results Summary in regards to Evaluation Criteria
	Reminder of Evaluation Criteria
	WP7 Results
	Conceptual method
	Method with associated tools
	Experimentations

	Evaluation of Results with Respects to Criteria

	Update on WP7 scientific and technical results
	Schema-Based Test Generation (SBTG) for security testing
	Overall Process
	Defining Security Test Objectives
	Behavioural Modelling
	Defining Schema

	Selective Test Generation Method (SeTGaM)
	Overall process
	Evolution Aspects in Security Testing
	SeTGaM without UML/OCL statechart diagram

	Integration in EvoTest Plugin

	Results of test campaign on POPS Case study
	GP 2.1.1 and GP 2.2 UICC Card Life Cycle
	Functional models
	Global Platform Security Properties to schemas
	POPS Case Study by the numbers

	GP 2.2 UICC Card Content Management
	Functional model
	GP Card Content Management Security Property to Schemas

	Feedback on the evaluation
	Calendar and Evaluation purpose
	Feedback of the evaluation

	Results of test campaign on HOME Case study
	Business Case
	Requirements
	Test Model
	System Model

	Change Requirements
	Evolution Process

	Conclusion / Discussion

